إجابة:
انظر أدناه
تفسير:
"هناك رقمان.."
واحد هو
المبلغ هو 43 ، ثم
مجموعة مصطلحات مماثلة وشروط تبديل
رقم واحد هو
إجابة:
معادلة:
تفسير:
افترض أن
الشيء الثاني الذي قيل لنا هو أن مجموع الرقمين يعادل
لأننا نعرف العدد الأكبر هو
لذلك الرقمان بالترتيب التصاعدي هما
مجموع الرقمين هو 104. العدد الأكبر هو واحد أقل من ضعف العدد الأصغر. ما هو العدد الاكبر؟
69 جبري ا ، لدينا x + y = 104. اختر أي واحد كـ "الأكبر". باستخدام "x" ، ثم x + 1 = 2 * y. إعادة ترتيب للعثور على 'y' لدينا y = (x + 1) / 2 ثم نستبدل هذا التعبير بحرف y في المعادلة الأولى. x + (x + 1) / 2 = 104. اضرب كلا الجانبين ب 2 للتخلص من الكسر ، اجمع المصطلحات. 2 * x + x + 1 = 208 ؛ 3 * × +1 = 208 ؛ 3 * س = 207 ؛ س = 207/3 ؛ x = 69. للعثور على "y" نعود إلى تعبيرنا: x + 1 = 2 * y 69 + 1 = 2 * y؛ 70 = 2 * ذ ؛ 35 = ذ. التحقق: 69 + 35 = 104 صحيح!
مجموع الرقمين هو 27. إذا كان العدد الأكبر ينقسم على العدد الأصغر ، يصبح العدد الحالي 3 والباقي 3. ما هي هذه الأرقام؟
الرقمان هما 6 و 21 لون ا (أزرق) ("إعداد الشروط الأولية") ملاحظة: يمكن أيض ا تقسيم الباقي إلى أجزاء مناسبة. دع القيمة الأصغر هي أن تكون القيمة الأكبر هي b اللون (أرجواني) ("الباقي مقسم إلى أجزاء" b ") a / b = 3 + اللون (أرجواني) (obrace (3 / b)) a / b = ( 3b) / b + 3 / ba = 3b + 3 "" ......... المعادلة (1) a + b = 27 "" .............. المعادلة ( 2) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ اللون (الأزرق) ("حل لـ" a و b) فكر في Eqn ( 2) a + b = 27 لون (أبيض) ("d") -> color (أبيض) ("d") a = 27-b "" .... المعادلة (2_a) باستخدام Eqn (2_a) بديلا عن
هل sqrt21 هو الرقم الحقيقي ، العدد الرشيد ، العدد الصحيح ، العدد الصحيح ، العدد غير المنطقي؟
إنه رقم غير عقلاني وبالتالي حقيقي. دعونا أولا نثبت أن sqrt (21) هو رقم حقيقي ، في الواقع ، الجذر التربيعي لكل الأرقام الحقيقية الموجبة هو حقيقي. إذا كانت x رقم ا حقيقي ا ، فإننا نحدد للأرقام الموجبة sqrt (x) = "sup" {yinRR: y ^ 2 <= x}. هذا يعني أننا ننظر إلى جميع الأرقام الحقيقية y بحيث y ^ 2 <= x ونأخذ أصغر رقم حقيقي أكبر من كل هذه y ، ما يسمى supremum. بالنسبة للأرقام السالبة ، لا توجد هذه y ، حيث أن أخذ هذا العدد في جميع الأرقام الحقيقية يؤدي إلى عدد موجب ، وجميع الأرقام الموجبة أكبر من الأرقام السالبة. بالنسبة لجميع الأرقام الموجبة ، هناك دائم ا بعض y يناسب الشرط y ^ 2 <= x ، أي 0. علاوة على ذلك ، ه