الجواب هو
أولا ، طرح
قم بتوصيل النتيجة في المعادلة الأصلية:
لتقسيم الكسور ، حو ل الكسر الثاني إلى متبادل ومضاعف الكسرين. متبادل لل
كيف يمكنك تبسيط [ frac {2} {9} cdot frac {3} {10} - (- frac {2} {9} div frac {1} {3})] - frac { 2} {5}؟
1/3 [2/9*3/10-(-2/9-:1/3)]-2/5 =[6/90-(-2/9*3/1)]-2/5 =[6/90+(2/9*3/1)]-2/5 =[6/90+6/9]-2/5 =[6/90+60/90]-2/5 =[66/90]-2/5 =66/90-36/90 =30/90 =1/3
كيف يمكنك تبسيط (1 / sqrt (a-1) + sqrt (a + 1)) / (1 / sqrt (a + 1) -1 / sqrt (a-1)) div sqrt (a + 1) / ( (a-1) sqrt (a + 1) - (a + 1) sqrt (a-1)) ، a> 1؟
تنسيق رياضيات ضخم ...> اللون (الأزرق) (((1 / sqrt (a-1) + sqrt (a + 1)) / (1 / sqrt (a + 1) -1 / sqrt (a-1)) ) / (sqrt (a + 1) / ((a-1) sqrt (a + 1) - (a + 1) sqrt (a-1))) = اللون (أحمر) (((1 / sqrt (a- 1) + sqrt (a + 1)) / ((sqrt (a-1) -sqrt (a + 1)) / (sqrt (a + 1) cdot sqrt (a-1)))) / / (sqrt (a +1) / (sqrt (a-1) cdot sqrt (a-1) cdot sqrt (a + 1) -sqrt (a + 1) cdot sqrt (a + 1) sqrt (a-1))) = اللون ( أزرق) (((1 / sqrt (a-1) + sqrt (a + 1)) / ((sqrt (a-1) -sqrt (a + 1)) / (sqrt (a + 1) cdot sqrt (a -1)))) / (sqrt (a + 1) / (sqrt (a + 1) cdot sqrt (a-1) (sqrt (a-1) -sqrt (a + 1))) = اللون (أحمر) ((1 / sqrt (a-1) + sqrt
تبسيط (- أنا sqrt 3) ^ 2. كيف يمكنك تبسيط هذا؟
-3 يمكننا كتابة الوظيفة الأصلية في شكلها الموسع كما هو موضح (-isqrt (3)) (- isqrt (3)) تعاملنا مع متغير ، ومنذ الأزمنة السالبة يساوي سالبة موجب ، وجذر مربع في الأوقات التي يكون فيها الجذر التربيعي لنفس الرقم هو ذلك الرقم ، نحصل على المعادلة أدناه i ^ 2 * 3 تذكر أن i = sqrt (-1) والتشغيل مع قاعدة الجذر التربيعي الموضح أعلاه ، يمكننا التبسيط كما هو موضح أدناه -1 * 3 إنها الآن مسألة حسابية -3 وهناك إجابتك :)