إجابة:
قم بترجمة المشكلة إلى بيان جبري وحل معادلة من الدرجة الثانية لتجد أن هناك زوجين من الأرقام يرضيان المشكلة.
تفسير:
عندما نحل المشاكل الجبرية ، فإن أول شيء يجب أن نفعله هو تحديد متغير لمجهولنا. مجهولون في هذه المشكلة هما رقمان متتاليان منتجهما
قيل لنا أن نتاج هذه الأرقام هو
توزيع
طرح
الآن لدينا معادلة من الدرجة الثانية. يمكننا محاولة معالجة ذلك ، من خلال إيجاد رقمين يتضاعفان على
حلولنا هي:
وبالتالي ، لدينا مجموعتان:
#28# و#28+2# أو#30# . يمكنك مشاهدة هذا#28*30=840# .#-30# و#-30+2# أو#-28# . مرة أخرى،#-30*-28=840# .
إجابة:
و reqd. غ. هي
تفسير:
لنفترض أن reqd. أعداد صحيحة هي
من قبل ، إذن ، لدينا
الحالة الأولى
القضية الثانية
نتاج عدد صحيحين متتاليين هو 24. العثور على اثنين من الأعداد الصحيحة. أجب على شكل نقاط مقترنة بأدنى رقمين صحيحين أولا . إجابة؟
الأعداد الصحيحة الزوجية المتتالية: (4،6) أو (-6 ، -4) دع ، يكون اللون (الأحمر) (n و n-2 هما الأعداد الصحيحة الزوجية المتتالية ، حيث يكون اللون (الأحمر) (n inZZ منتج n و n-2 هي 24 ie n (n-2) = 24 => n ^ 2-2n-24 = 0 الآن ، [(-6) + 4 = -2 و (-6) xx4 = -24]: .n ^ 2-6n + 4n-24 = 0: .n (n-6) +4 (n-6) = 0:. (n-6) (n + 4) = 0: .n-6 = 0 أو n + 4 = 0 ... إلى [n inZZ] => اللون (الأحمر) (n = 6 أو n = -4 (i) اللون (الأحمر) (n = 6) => اللون (الأحمر) (n-2) = 6-2 = اللون (أحمر) (4) لذلك ، الأعداد الصحيحة الزوجية المتتالية: (4،6) (ii)) اللون (الأحمر) (n = -4) => اللون (الأحمر) (n-2) = -4-2 = اللون (أحمر) (- 6) لذلك ، الأعداد ال
ناتج عدد صحيحين فرديين متتاليين هو 29 أقل من 8 أضعاف مجموعهما. العثور على اثنين من الأعداد الصحيحة. أجب على شكل نقاط مقترنة بأدنى رقمين صحيحين أولا ؟
(13 ، 15) أو (1 ، 3) اجعل x و x + 2 الأرقام المتتالية الفردية ، ثم حسب السؤال ، لدينا (x) (x + 2) = 8 (x + x + 2) - 29 :. x ^ 2 + 2x = 8 (2x + 2) - 29:. x ^ 2 + 2x = 16x + 16 - 29:. x ^ 2 + 2x - 16x - 16 + 29 = 0:. x ^ 2 - 14x + 13 = 0:. x ^ 2 -x - 13x + 13 = 0:. x (x - 1) - 13 (x - 1) = 0:. (x - 13) (x - 1) = 0:. x = 13 أو 1 الآن ، الحالة الأولى: x = 13:. س + 2 = 13 + 2 = 15:. الأرقام هي (13 ، 15). الحالة الثانية: س = 1:. س + 2 = 1+ 2 = 3:. الأرقام هي (1 ، 3). وبالتالي ، هناك حالتان يجري تشكيلهما هنا ؛ يمكن أن يكون زوج الأرقام كليهما (13 ، 15) أو (1 ، 3).
"لينا لديه عدد صحيحين متتاليين.لاحظت أن مجموعها يساوي الفرق بين المربعات. يختار لينا عدد صحيحين متتاليين آخرين ويلاحظ نفس الشيء. تثبت جبري ا أن هذا صحيح بالنسبة لأي عدد صحيحين متتاليين؟
يرجى الرجوع إلى الشرح. تذكر أن الأعداد الصحيحة المتتالية تختلف من 1. وبالتالي ، إذا كانت m عدد ا صحيح ا واحد ا ، فيجب أن تكون الأعداد الصحيحة التالية هي n + 1. مجموع هذين الأعداد الصحيحة هو n + (n + 1) = 2n + 1. الفرق بين المربعات الخاصة بهم هو (n + 1) ^ 2-n ^ 2 ، = (n ^ 2 + 2n + 1) -n ^ 2 ، = 2n + 1 ، حسب الرغبة! تشعر بفرح الرياضيات.!