إجابة:
نطاق:
نطاق::
تفسير:
اعتبارات لمجال
الجمع بين هذه النتائج:
مجال
اعتبارات لمجموعة
منذ
الجمع بين هذه النتائج:
مدى ال
هذه النتائج يمكن ملاحظتها من قبل الرسم البياني لل
رسم بياني {1 / (sqrtx-2) -14.24 ، 14.24 ، -7.12 ، 7.12}
ما هو اتجاه وحجم المجال المغناطيسي الذي يسافر فيه الجسيم؟ ما هو اتجاه وحجم المجال المغناطيسي الذي يسافر الجسيم الثاني؟
(أ) "B" = 0.006 "" "N.s" أو "Tesla" في اتجاه يخرج من الشاشة. وتعطى القوة F على جسيم من الشحنة q تتحرك بسرعة v خلال مجال مغناطيسي من القوة B بواسطة: F = Bqv:. B = F / (qv) B = 0.24 / (9.9xx10 ^ (- 5) xx4xx10 ^ 5) = 0.006 "" "Ns" هذه المتجهات الثلاثة للحقل المغناطيسي B والسرعة v والقوة على الجسيم F متبادلة بشكل عمودي: تخيل تدوير المخطط أعلاه بمقدار 180 ^ @ في اتجاه عمودي على مستوى الشاشة. يمكنك أن ترى أن شحنة + ve تتحرك من اليسار إلى اليمين عبر الشاشة (الشرق) ستشعر بقوة عمودي ا لأسفل (جنوب ا) إذا كان اتجاه الحقل B خارج الشاشة. (ب) الجزء الثاني من السؤال لا معنى له ب
إثبات أن أحد عناصر المجال المتكامل هو وحدة iff التي تنشئ المجال.
التأكيد خاطئ. ضع في اعتبارك حلقة أرقام النموذج: a + bsqrt (2) حيث a ، b في QQ هذا هو حلقة تبادلية ذات هوية تعدد 1! = 0 ولا توجد مقسومات صفرية. وهذا هو ، هو مجال لا يتجزأ. في الواقع ، إنه حقل أيض ا لأن أي عنصر غير صفري له معكوس مضاعف. معكوس المضاعف لعنصر غير صفري من النموذج: a + bsqrt (2) "" هو "" a / (a ^ 2-2b ^ 2) -b / (a ^ 2-2b ^ 2) sqrt (2 ). إذن أي رقم رشيد غير صفري هو وحدة ، لكنه لا يولد الحلبة بأكملها ، لأن الروتين الفرعي الذي تم إنشاؤه به سيحتوي على أرقام منطقية فقط.
ما هي خصائص الرسم البياني للدالة f (x) = (x + 1) ^ 2 + 2؟ تحقق من كل ما ينطبق. المجال هو كل الأرقام الحقيقية. النطاق هو كل الأعداد الحقيقية أكبر من أو تساوي 1. تقاطع y هو 3. الرسم البياني للدالة هو 1 وحدة لأعلى و
الأول والثالث صحيحان ، الثاني خاطئ ، الرابع لم يكتمل. - المجال هو في الواقع كل الأرقام الحقيقية. يمكنك إعادة كتابة هذه الوظيفة كـ x ^ 2 + 2x + 3 ، وهو متعدد الحدود ، وعلى هذا النحو يحتوي المجال mathbb {R} النطاق ليس كل الرقم الحقيقي أكبر من أو يساوي 1 ، لأن الحد الأدنى هو 2. حقيقة. (x + 1) ^ 2 عبارة عن ترجمة أفقية (وحدة واحدة على اليسار) لـ parabola "x strandard" x ^ 2 ، والتي لها نطاق [0 ، infty). عندما تضيف 2 ، فأنت تقوم بتحريك الرسم البياني عمودي ا بواسطة وحدتين ، وبالتالي يكون نطاقك هو [2 ، infty) لحساب تقاطع y ، فقط قم بتوصيل x = 0 في المعادلة: لديك y = 1 ^ 2 + 2 = 1 + 2 = 3 ، لذلك صحيح أن تقاطع y هو 3. السؤ