إجابة:
استخدم الصيغة:
للحصول على النتيجة:
تفسير:
نجد طول الخطوة باستخدام الصيغة التالية:
لذلك ، فإن قيم
من أجل العثور على
على سبيل المثال: للحصول على
إلى عن على
وبالمثل،
بعد ذلك ، نستخدم الصيغة ،
محيط شبه منحرف 42 سم. الجانب المائل 10 سم والفرق بين القواعد 6 سم. حساب: أ) المساحة ب) حجم الحصول عليها عن طريق تدوير شبه منحرف حول قاعدة رئيسية؟
دعونا نفكر في شبه منحرف متساوي الساقين ABCD يمثل حالة مشكلة معينة. قاعدته الرئيسية CD = xcm ، قاعدة بسيطة AB = ycm ، جوانب مائلة هي AD = BC = 10cm تعطى x-y = 6cm ..... [1] ومحيط x + y + 20 = 42cm => x + y = 22cm ..... [2] مضيفا [1] و [2] نحصل على 2x = 28 => س = 14 سم لذلك ص = 8 سم الآن CD = DF = k = 1/2 (xy) = 1/2 (14-8) = 3cm وبالتالي الارتفاع h = sqrt (10 ^ 2-k ^ 2) = sqrt91cm لذا منطقة شبه منحرف A = 1/2 (x + y) xxh = 1 / 2xx (14 + 8) xxsqrt91 = 11sqrt91cm ^ 2 ومن الواضح أنه عند الدوران حول قاعدة رئيسية تتكون مادة صلبة مكونة من مخروطين متشابهين في الجانبين واسطوانة في الوسط كما هو موضح في الشكل أعلاه. الحجم الكلي ل
PERIMETER من شبه منحرف متساوي الساق ABCD يساوي 80 سم. طول الخط AB أكبر بـ 4 مرات من طول خط القرص المضغوط وهو 2/5 طول الخط BC (أو الخطوط التي هي نفسها في الطول). ما هي منطقة شبه منحرف؟
مساحة شبه المنحرف 320 سم ^ 2. دع المربح يكون كما هو موضح أدناه: هنا ، إذا افترضنا أن القرص المضغوط الجانبي الأصغر = أ والجانب الأكبر AB = 4a و BC = a / (2/5) = (5a) / 2 على هذا النحو BC = AD = (5a) / 2 ، CD = a و AB = 4a وبالتالي فإن المحيط هو (5a) / 2xx2 + a + 4a = 10a لكن المحيط 80 سم .. ومن ثم = 8 سم. وجانبان متوازيان يظهران على أنه أ و ب 8 سم. و 32 سم. الآن ، نرسم عمودي ا من كل من C و D على AB ، مما يشكل اثنين من المثلثات الزاوية اليمنى المتماثلة ، التي يبلغ حجمها السفلي 5 / 2xx8 = 20 سم. والقاعدة هي (4xx8-8) / 2 = 12 ، ومن ثم ارتفاعها sqrt (20 ^ 2-12 ^ 2) = sqrt (400-144) = sqrt256 = 16 وبالتالي كمنطقة شبه منحرفة هي 1
كيف يمكنك استخدام قاعدة شبه منحرف مع n = 4 لتقدير لا يتجزأ int_0 ^ (pi / 2) cos (x ^ 2) dx؟
Int_0 ^ (pi / 2) cos (x ^ 2) dx ~~ 0.83 تخبرنا قاعدة شبه منحرف أن: int_b ^ af (x) dx ~~ h / 2 [f (x_0) + f (x_n) +2 [f (x_1) + f (x_2) + cdotsf (x_ (n-1))]] حيث h = (ba) / nh = (pi / 2-0) / 4 = pi / 8 لذلك لدينا: int_0 ^ (pi / 2) جتا (س ^ 2) DX ~~ بي / 16 [و (0) + و (بي / 2) +2 [و (بي / 8) + و (بي / 4) + و ((3pi) / 8)]] = pi / 16 [cos ((0) ^ 2) + cos ((pi / 2) ^ 2) +2 [cos ((pi / 8) ^ 2) + cos ((pi / 4) ^ 2) + cos (((3pi) / 8) ^ 2)]] ~~ pi / 16 [1-0.78 + 1.97 + 1.63 + 0.36] ~~ pi / 16 [4.23] ~~ 0.83