إجابة:
لا يوجد حل ممكن.
تفسير:
سمح
لذلك الأعداد الصحيحة ستكون
و
سوف يكون مجموعهم
قيل لنا أن هذا المبلغ هو
وبالتالي
مما يوحي
و
لكن قيل لنا أن الأرقام هي الأعداد الصحيحة
لذلك لا يوجد حل ممكن.
مجموع الأعداد الصحيحة الفردية الأربعة هي ثلاثة أكثر من 5 أضعاف الأعداد الصحيحة ، ما هي الأعداد الصحيحة؟
N -> {9،11،13،15} colour (blue) ("Build the equations") اسمح لكل مصطلح فردي يكون n اجعل مجموع جميع المصطلحات s ثم مصطلح 1-> n term 2-> n +2 term 3-> n + 4 term 4-> n + 6 ثم s = 4n + 12 ............................ ..... (1) بالنظر إلى أن = 3 + 5n .................................. ( 2) '~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ معادلة (1) إلى (2) وبالتالي إزالة variable s 4n + 12 = s = 3 + 5n جمع مثل المصطلحات 5n-4n = 12-3 n = 9 '~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~ هكذا المصطلحات هي: term 1-> n-> 9 term 2-> n + 2-> 11 مصطلح 3-> n + 4-> 13 مصطلح 4-> n + 6-> 15 n -> { 9،11،
أصغر من ثلاثة أعداد صحيحة فردية متتالية ثلاثة أكثر من الأعداد الصحيحة. ما هي الأعداد الصحيحة؟
الأعداد الصحيحة هي 7 و 9 و 11. وسنعتبر الأعداد الصحيحة الفردية الثلاثة على التوالي هي: x و x + 2 و x + 4. من البيانات المقدمة ، نعلم أن :: 2x-3 = x + 4 أضف 3 إلى كل جانب. 2x = x + 7 اطرح x من كل جانب. س = 7:. x + 2 = 9 و x + 4 = 11
معرفة الصيغة إلى مجموع الأعداد الصحيحة N أ) ما هو مجموع الأعداد الصحيحة المربعة N على التوالي ، Sigma_ (k = 1) ^ N k ^ 2 = 1 ^ 2 + 2 ^ 2 + cdots + (N-1 ) ^ 2 + N ^ 2؟ ب) مجموع أول عدد صحيح من الأعداد الصحيحة المتتالية N Sigma_ (k = 1) ^ N k ^ 3؟
بالنسبة إلى S_k (n) = sum_ {i = 0} ^ ni ^ k S_1 (n) = (n (n + 1)) / 2 S_2 (n) = 1/6 n (1 + n) (1 + 2 n ) S_3 (n) = ((n + 1) ^ 4- (n + 1) -6S_2 (n) -4S_1 (n)) / 4 لدينا sum_ {i = 0} ^ ni ^ 3 = sum_ {i = 0} ^ n (i + 1) ^ 3 - (n + 1) ^ 3 sum_ {i = 0} ^ ni ^ 3 = sum_ {i = 0} ^ ni ^ 3 + 3sum_ {i = 0} ^ ni ^ 2 + 3sum_ {i = 0} ^ ni + sum_ {i = 0} ^ n 1- (n + 1) ^ 3 0 = 3sum_ {i = 0} ^ ni ^ 2 + 3sum_ {i = 0} ^ ni + sum_ {i = 0} ^ n 1- (n + 1) ^ 3 حل لـ sum_ {i = 0} ^ ni ^ 2 sum_ {i = 0} ^ ni ^ 2 = (n + 1) ^ 3 / 3- (n + 1) / 3-sum_ {i = 0} ^ ni لكن sum_ {i = 0} ^ ni = ((n + 1) n) / 2 لذلك sum_ {i = 0} ^ ni ^ 2 = (n +1) ^ 3 / 3- (n