إجابة:
تفسير:
أولا اعتبر أن:
هذا يعني أننا نبحث عن
إذا
لايجاد
إجابة:
تفسير:
نرى أولا
ويمثلها هذا المثلث:
الآن أن لدينا مثلث ذلك
استخدم نظرية فيثاغورس لتحديد طول الجانب المجاور
تبسيط (1- كوس ثيتا + ثيتا الخطيئة) / (1+ كوس ثيتا + ثيتا الخطيئة)؟
= sin (theta) / (1 + cos (theta)) (1-cos (theta) + sin (theta)) / (1 + cos (theta) + sin (theta)) = (1-cos (theta) + sin (theta)) * (1 + cos (theta) + sin (theta)) / (1 + cos (theta) + sin (theta)) ^ 2 = ((1 + sin (theta)) ^ 2-cos ^ 2 (theta)) / (1 + cos ^ 2 (theta) + sin ^ 2 (theta) +2 sin (theta) +2 cos (theta) + 2 sin (theta) cos (theta)) = ((1+ sin (theta)) ^ 2-cos ^ 2 (theta)) / (2 + 2 sin (theta) +2 cos (theta) + 2 sin (theta) cos (theta)) = ((1 + sin (theta) ) ^ 2-cos ^ 2 (theta)) / (2 (1 + cos (theta)) + 2 sin (theta) (1 + cos (theta)) = (1/2) ((1 + sin (theta) ) ^ 2-cos ^ 2 (theta)) / ((1 + cos (theta)) (1 + sin (
خطيئة ثيتا / س = كوس ثيتا / ذ ثم ذنب ثيتا - كوس ثيتا =؟
إذا كان frac { sin theta} {x} = frac {cos theta] {y} ثم sin theta - cos theta = pm frac {x - y} {sqrt {x ^ 2 + y ^ 2}} frac { sin theta} {x} = frac {cos theta] {y} frac { sin theta} { cos theta} = frac {x} {y} tan theta = x / y هذا يشبه المثلث الأيمن مع عكس x والمجاورة y so cos theta = frac { pm y} {sqrt {x ^ 2 + y ^ 2} sin theta = tan theta cos theta sin theta - cos theta = tan theta cos theta - cos theta = cos theta ( tan theta - 1) = frac { pm y} {sqrt {x ^ 2 + y ^ 2}} (x / y -1) sin theta - cos theta = pm frac {x - y } {الجذر التربيعي {س ^ 2 + ص ^ 2}}
ماذا -3sin (أركوس (2)) - كوس (قوس كوس (3)) يساوي؟
مشكلة لا يمكن حلها لا توجد أقواس أن جيب تمامها يساوي 2 و 3. من وجهة نظر تحليلية ، يتم تعريف وظيفة arccos فقط على [-1،1] لذلك arccos (2) و arccos (3) .