إجابة:
لا يغير الرقم الذري.
تفسير:
الرقم الذري هو عدد البروتونات في نواة الذرة. يمكن أن تكون الذرة مشعة عندما لا تكون نسبة النيوترونات والبروتونات هي الأمثل. ثم تتحلل انبعاثات الجسيمات.
ومن الممكن أيضا أن الذرة في متبدل الاستقرار الحالة ، وهذا يعني أن نواة الذرة تحتوي على طاقة زائدة. في هذه الحالة تكون نسبة النيوترون / البروتون على ما يرام ، لكن النواة تحتاج إلى فقدان طاقتها الزائدة. الطاقة الزائدة المنبعثة أشعة غاما.
الشكل العام لمعادلة هذا الانحلال هو:
بحيث
يمكنك أن ترى أن العدد الذري ، وعدد الكتلة ، وبالتالي اسم النظير ، يظل كما هو!
مجموع الرقمين هو 104. العدد الأكبر هو واحد أقل من ضعف العدد الأصغر. ما هو العدد الاكبر؟
69 جبري ا ، لدينا x + y = 104. اختر أي واحد كـ "الأكبر". باستخدام "x" ، ثم x + 1 = 2 * y. إعادة ترتيب للعثور على 'y' لدينا y = (x + 1) / 2 ثم نستبدل هذا التعبير بحرف y في المعادلة الأولى. x + (x + 1) / 2 = 104. اضرب كلا الجانبين ب 2 للتخلص من الكسر ، اجمع المصطلحات. 2 * x + x + 1 = 208 ؛ 3 * × +1 = 208 ؛ 3 * س = 207 ؛ س = 207/3 ؛ x = 69. للعثور على "y" نعود إلى تعبيرنا: x + 1 = 2 * y 69 + 1 = 2 * y؛ 70 = 2 * ذ ؛ 35 = ذ. التحقق: 69 + 35 = 104 صحيح!
مجموع الرقمين هو 27. إذا كان العدد الأكبر ينقسم على العدد الأصغر ، يصبح العدد الحالي 3 والباقي 3. ما هي هذه الأرقام؟
الرقمان هما 6 و 21 لون ا (أزرق) ("إعداد الشروط الأولية") ملاحظة: يمكن أيض ا تقسيم الباقي إلى أجزاء مناسبة. دع القيمة الأصغر هي أن تكون القيمة الأكبر هي b اللون (أرجواني) ("الباقي مقسم إلى أجزاء" b ") a / b = 3 + اللون (أرجواني) (obrace (3 / b)) a / b = ( 3b) / b + 3 / ba = 3b + 3 "" ......... المعادلة (1) a + b = 27 "" .............. المعادلة ( 2) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ اللون (الأزرق) ("حل لـ" a و b) فكر في Eqn ( 2) a + b = 27 لون (أبيض) ("d") -> color (أبيض) ("d") a = 27-b "" .... المعادلة (2_a) باستخدام Eqn (2_a) بديلا عن
هل sqrt21 هو الرقم الحقيقي ، العدد الرشيد ، العدد الصحيح ، العدد الصحيح ، العدد غير المنطقي؟
إنه رقم غير عقلاني وبالتالي حقيقي. دعونا أولا نثبت أن sqrt (21) هو رقم حقيقي ، في الواقع ، الجذر التربيعي لكل الأرقام الحقيقية الموجبة هو حقيقي. إذا كانت x رقم ا حقيقي ا ، فإننا نحدد للأرقام الموجبة sqrt (x) = "sup" {yinRR: y ^ 2 <= x}. هذا يعني أننا ننظر إلى جميع الأرقام الحقيقية y بحيث y ^ 2 <= x ونأخذ أصغر رقم حقيقي أكبر من كل هذه y ، ما يسمى supremum. بالنسبة للأرقام السالبة ، لا توجد هذه y ، حيث أن أخذ هذا العدد في جميع الأرقام الحقيقية يؤدي إلى عدد موجب ، وجميع الأرقام الموجبة أكبر من الأرقام السالبة. بالنسبة لجميع الأرقام الموجبة ، هناك دائم ا بعض y يناسب الشرط y ^ 2 <= x ، أي 0. علاوة على ذلك ، ه