ارتفاع المثلث متساوي الأضلاع هو 12. ما هو طول الجانب وما هي مساحة المثلث؟
طول جانب واحد هو 8sqrt3 والمساحة 48sqrt3. اسمح للطول الجانبي والارتفاع (الارتفاع) والمساحة أن تكون s و h و A على التوالي. اللون (أبيض) (xx) h = sqrt3s / 2 => s * sqrt3 / 2color (أحمر) (* 2 / sqrt3) = 12 لون (أحمر) (* 2 / sqrt3) => s = 12 * 2 / sqrt3color ) (* sqrt3 / sqrt3) اللون (أبيض) (xxx) = 8sqrt3 اللون (أبيض) (xx) A = ah / 2 اللون (أبيض) (xxx) = 8sqrt3 * 12/2 اللون (أبيض) (48) = 48sqrt3
يتم زيادة طول كل جانب من مثلث متساوي الأضلاع بنسبة 5 بوصات ، لذلك ، المحيط الآن 60 بوصة. كيف تكتب وتحل المعادلة لإيجاد الطول الأصلي لكل جانب من المثلث متساوي الأضلاع؟
لقد وجدت: 15 "في" دعنا نسمي الأطوال الأصلية x: زيادة 5 "في" ستمنحنا: (س + 5) + (س + 5) + (س + 5) = 60 3 (س + 5) = 60 إعادة ترتيب: x + 5 = 60/3 x + 5 = 20 x = 20-5 x = 15 "في"
محيط المثلث 29 ملم. طول الجانب الأول هو ضعف طول الجانب الثاني. طول الجانب الثالث هو 5 أكثر من طول الجانب الثاني. كيف يمكنك العثور على الأطوال الجانبية للمثلث؟
S_1 = 12 s_2 = 6 s_3 = 11 محيط المثلث هو مجموع أطوال جميع جوانبه. في هذه الحالة ، يتم إعطاء محيط 29 مم. لذلك في هذه الحالة: s_1 + s_2 + s_3 = 29 لذلك نقوم بحل لطول الجوانب ، نقوم بترجمة البيانات في المعطى إلى نموذج المعادلة. "طول الجانب الأول هو ضعف طول الجانب الثاني" ، ولحل هذه المشكلة ، نخصص متغير ا عشوائي ا إما s_1 أو s_2. على سبيل المثال ، أود أن أكون x طول الجانب الثاني لتجنب وجود كسور في معادلي. لذلك نحن نعرف أن: s_1 = 2s_2 ولكن بما أننا سمحنا s_2 أن يكون x ، فإننا نعرف الآن: s_1 = 2x s_2 = x "طول الجانب الثالث هو 5 أكثر من طول الجانب الثاني." ترجمة العبارة أعلاه إلى نموذج المعادلة ... s_3 = s_2 +