ما قيم x هي وظيفة مقعر لأسفل إذا كانت f (x) = 15x ^ (2/3) + 5x؟

ما قيم x هي وظيفة مقعر لأسفل إذا كانت f (x) = 15x ^ (2/3) + 5x؟
Anonim

#f (x) = 15x ^ (2/3) + 5x # هو مقعر للأسفل للجميع # ضعف <0 #

كما اقترح كيم ، يجب أن يوضح الرسم البياني هذا (انظر أسفل هذا المنشور).

بالتناوب،

لاحظ أن #f (0) = 0 #

والتحقق من النقاط الحرجة من خلال اتخاذ المشتق والإعداد ل #0#

نحن نحصل

#f '(x) = 10x ^ (- 1/3) +5 = 0 #

أو

# 10 / س ^ (1/3) = -5 #

الذي يبسط (إذا #x <> 0 #) إلى

# x ^ (1/3) = -2 #

# # rarr # س = -8 #

في # س = -8 #

#f (-8) = 15 (-8) ^ (2/3) + 5 (-8) #

#=15(-2)^2 + (-40)#

#=20#

منذ (#-8,20#) هي النقطة الحرجة الوحيدة (بخلاف (#0,0#))

و # F (خ) # ينقص من # س = -8 # إلى # س = 0 #

إنه يتبع هذا # F (خ) # النقصان على كل جانب من (#-8,20#)، وبالتالي

# F (خ) # هو مقعر أسفل عندما # ضعف <0 #.

متى # ضعف> 0 # نحن ببساطة نلاحظ ذلك

#g (x) = 5x # هو خط مستقيم و

#f (x) = 15x ^ (2/3) + 5x # لا يزال مبلغ إيجابي (وهي # 15X ^ (2/3) # فوق هذا الخط

وبالتالي # F (خ) # ليس مقعر للأسفل ل # ضعف> 0 #.

رسم بياني {15x ^ (2/3) + 5x -52 ، 52 ، -26 ، 26}