إجابة:
تفسير:
نريد أن نعرف متى تقل السرعة ، مما يعني أن التسارع أقل من 0.
التسارع هو المشتق الثاني للموضع ، لذا استنبط المعادلة مرتين.
(إذا كنت مرتاح ا باستخدام قاعدة المنتج مع القوى ، فانتقل مباشرة إلى الاشتقاق ، أو قم بتبسيط المعادلة أولا باستخدام الجبر):
خذ المشتق الأول:
خذ المشتق الثاني:
اضبط وظيفة التسريع هذه على <0 وحل من أجل
في بيان المشكلة ، الوقت هو
ت عطى سرعة الجسيم المتحرك على طول المحور السيني كـ v = x ^ 2 - 5x + 4 (في m / s) ، حيث تشير x إلى إحداثي x للجسيم بالأمتار. العثور على حجم تسارع الجسيمات عندما تكون سرعة الجسيمات صفر؟
السرعة المعطاة v = x ^ 2 5x + 4 Acceleration a - = (dv) / dt: .a = d / dt (x ^ 2 5x + 4) => a = (2x (dx) / dt 5 (dx) / dt) نعلم أيض ا أن (dx) / dt- = v => a = (2x 5) v في v = 0 أعلاه تصبح المعادلة = 0
عندما يتم وضع كائن على بعد 8 سم من عدسة محدبة ، يتم التقاط صورة على شاشة في 4com من العدسة. الآن يتم نقل العدسة على طول محورها الرئيسي بينما يتم الحفاظ على الكائن والشاشة ثابتة. حيث يجب نقل العدسة للحصول على آخر واضح؟
كائن المسافة ومسافة الصورة تحتاج إلى أن تكون متبادلة. يتم إعطاء شكل غاوسي مشترك لمعادلة العدسة كـ 1 / "مسافة الكائن" + 1 / "مسافة الصورة" = 1 / "البعد البؤري" أو 1 / "O" + 1 / "I" = 1 / "f" إدراج قيم معينة حصلنا على 1/8 + 1/4 = 1 / f => (1 + 2) / 8 = 1 / f => f = 8 / 3cm الآن يتم نقل العدسة ، تصبح المعادلة 1 / "O" +1 / "I" = 3/8 نرى أن الحل الآخر فقط هو مسافة الكائن ويتم تبادل مسافة الصورة. وبالتالي ، إذا تم إجراء مسافة الكائن = 4 سم ، سيتم تشكيل صورة واضحة في 8 سم
يتحرك الجسيم على طول المحور السيني بحيث يتم إعطاء موقعه في الوقت t بواسطة x (t) = (2-t) / (1-t). ما هو تسارع الجسيم في وقت ر = 0؟
2 "ms" ^ - 2 a (t) = d / dt [v (t)] = (d ^ 2) / (dt ^ 2) [x (t)] x (t) = (2-t) / (1-t) v (t) = d / dt [(2-t) / (1-t)] = ((1-t) d / dt [2-t] - (2-t) d / dt [1 ر]) / (1-ر) ^ 2 = ((1-ر) (- 1) - (2-ر) (- 1)) / (1-ر) ^ 2 = (ر-1 + 2-t) / (1-t) ^ 2 = 1 / (1-t) ^ 2 a (t) = d / dt [(1-t) ^ - 2] = - 2 (1-t) ^ - 3 * d / dt [1-t] = - 2 (1-t) ^ - 3 (-1) = 2 / (1-t) ^ 3 a (0) = 2 / (1-0) ^ 3 = 01/02 ^ 3 = 2/1 = 2 "مللي" ^ - 2