إجابة:
تفسير:
معطى
يتم إعطاء معادلة المنحنى بواسطة y = x ^ 2 + ax + 3 ، حيث a ثابت. بالنظر إلى أنه يمكن أيض ا كتابة هذه المعادلة كـ y = (x + 4) ^ 2 + b ، أوجد (1) قيمة a و b (2) إحداثيات نقطة تحول المنحنى.
التفسير هو في الصور.
الخط (k-2) y = 3x يلبي المنحنى xy = 1 -x عند نقطتين متميزتين ، ابحث عن مجموعة قيم k. اذكر أيض ا قيم k إذا كان الخط هو الظل إلى المنحنى. كيف يمكن العثور عليه؟
يمكن إعادة كتابة معادلة الخط كـ ((k-2) y) / 3 = x استبدال قيمة x في معادلة المنحنى ، (((k-2) y) / 3) y = 1- (( (k-2) y) / 3 اسمح k-2 = a (y ^ 2a) / 3 = (3-ya) / 3 y ^ 2a + ya-3 = 0 بما أن الخط يتقاطع عند نقطتين مختلفتين ، فإن التمييز يجب أن تكون المعادلة أعلاه أكبر من الصفر. D = a ^ 2-4 (-3) (a)> 0 a [a + 12]> 0 نطاق a يخرج ليكون ، في (-oo ، -12) uu (0، oo) لذلك ، (k-2) في (-oo ، -12) uu (2، oo) مضيفا 2 لكلا الجانبين ، k في (-oo ، -10) ، (2 ، oo) إذا كان الخط يجب أن يكون ظل ا ، يجب أن يكون التمييز صفرا ، لأنه يمس المنحنى عند نقطة واحدة فقط ، [a + 12] = 0 (k-2) [k-2 + 12] = 0 لذا ، فإن قيم k هي 2 و -10
يتم تعريف المنحنى بواسطة المعيار eqn x = t ^ 2 + t - 1 و y = 2t ^ 2 - t + 2 للجميع t. i) أوضح أن A (-1 ، 5_ تقع على المنحنى. ii) أوجد dy / dx. ج) العثور على eqn من الظل إلى المنحنى في حزب العمال. ا . ؟
لدينا المعادلة المعلمية {(x = t ^ 2 + t-1) ، (y = 2t ^ 2-t + 2):}. لإظهار أن (-1،5) تقع على المنحنى المحدد أعلاه ، يجب أن نوضح أن هناك t_A معي ن ا في t = t_A ، x = -1 ، y = 5. وبالتالي ، {(-1 = t_A ^ 2 + t_A-1) ، (5 = 2t_A ^ 2-t_A + 2):}. حل المعادلة العليا يكشف أن t_A = 0 "أو" -1. حل الجزء السفلي يكشف أن t_A = 3/2 "أو" -1. ثم ، في t = -1 ، x = -1 ، y = 5 ؛ وبالتالي (-1،5) تقع على المنحنى. للعثور على الميل عند A = (- 1،5) ، وجدنا أولا ("d" y) / ("d" x). بواسطة قاعدة السلسلة ("d" y) / ("d" x) = ("d" y) / ("d" t) * ("d" t) / ("d&qu