إجابة:
في ازدياد
تفسير:
لمعرفة ما إذا كانت وظيفة
إذا
إذا
إذا
كيف تثبت (1 + sinx-cosx) / (1 + cosx + sinx) = tan (x / 2)؟
من فضلك، انظر بالأسفل. LHS = (1-cosx + sinx) / (1 + cosx + sinx) = (2sin ^ 2 (x / 2) + 2sin (x / 2) * cos (x / 2)) / (2cos ^ 2 (x / 2) + 2sin (x / 2) * cos (x / 2) = (2sin (x / 2) [sin (x / 2) + cos (x / 2)]) / (2cos (x / 2) * [ sin (x / 2) + cos (x / 2)]) = tan (x / 2) = RHS
يمكن للشخص مساعدة التحقق من هذه الهوية حساب المثلثات؟ (Sinx + cosx) ^ 2 / الخطيئة ^ 2X-جتا ^ 2X = الخطيئة ^ 2X-جتا ^ 2X / (sinx-cosx) ^ 2
تم التحقق منه أدناه: (sinx + cosx) ^ 2 / (sin ^ 2x-cos ^ 2x) = (sin ^ 2x-cos ^ 2x) / (sinx-cosx) ^ 2 => (إلغاء ((sinx + cosx) ) (sinx + cosx)) / (Cancel ((sinx + cosx)) (sinx-cosx)) = (sin ^ 2x-cos ^ 2x) / (sinx-cosx) ^ 2 => ((sinx + cosx) ( sinx-cosx)) / ((sinx-cosx) (sinx-cosx)) = (sin ^ 2x-cos ^ 2x) / (sinx-cosx) ^ 2 => اللون (الأخضر) ((sin ^ 2x-cos ^ 2X) / (sinx-cosx) ^ 2) = (الخطيئة ^ 2X-جتا ^ 2X) / (sinx-cosx) ^ 2
إثبات ذلك: sqrt ((1-cosx) / (1 + cosx)) + sqrt ((1 + cosx) / (1-cosx)) = 2 / abs (sinx)؟
إثبات أدناه باستخدام اقتران ونسخة مثلثية من نظرية فيثاغورس. الجزء 1 sqrt ((1-cosx) / (1 + cosx)) اللون (أبيض) ("XXX") = sqrt (1-cosx) / sqrt (1 + cosx) اللون (أبيض) ("XXX") = sqrt ((1-cosx)) / sqrt (1 + cosx) * sqrt (1-cosx) / sqrt (1-cosx) اللون (أبيض) ("XXX") = (1-cosx) / sqrt (1-cos ^ 2x) الجزء 2 بالمثل sqrt ((1 + cosx) / (1-cosx) اللون (أبيض) ("XXX") = (1 + cosx) / sqrt (1-cos ^ 2x) الجزء 3: الجمع بين المصطلحات sqrt ( (1-cosx) / (1 + cosx)) + sqrt ((1 + cosx) / (1-cosx) اللون (أبيض) ("XXX") = (1-cosx) / sqrt (1-cos ^ 2x) لون (1 + cosx) / sqrt (1-cos ^ 2x) (أبيض) ("