إجابة:
الأعداد الصحيحة الثلاثة المتتالية هي -7 ، -5 ، -3
تفسير:
يمكن تمثيل الأعداد الصحيحة الفردية الثلاثة على التوالي جبري ا بواسطة
لأنها غريبة يجب أن تكون الزيادات بوحدات من اثنين.
مجموع الأرقام الثلاثة هو -15
مجموع الأعداد الصحيحة الفردية الأربعة هي ثلاثة أكثر من 5 أضعاف الأعداد الصحيحة ، ما هي الأعداد الصحيحة؟
N -> {9،11،13،15} colour (blue) ("Build the equations") اسمح لكل مصطلح فردي يكون n اجعل مجموع جميع المصطلحات s ثم مصطلح 1-> n term 2-> n +2 term 3-> n + 4 term 4-> n + 6 ثم s = 4n + 12 ............................ ..... (1) بالنظر إلى أن = 3 + 5n .................................. ( 2) '~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ معادلة (1) إلى (2) وبالتالي إزالة variable s 4n + 12 = s = 3 + 5n جمع مثل المصطلحات 5n-4n = 12-3 n = 9 '~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~ هكذا المصطلحات هي: term 1-> n-> 9 term 2-> n + 2-> 11 مصطلح 3-> n + 4-> 13 مصطلح 4-> n + 6-> 15 n -> { 9،11،
مجموع مربعات الأعداد الصحيحة الفردية الفردية السلبية تساوي 514. كيف تجد الأعداد الصحيحة اثنين؟
-15 و -17 رقمين سالبين فرديين: n و n + 2. مجموع المربعات = 514: n ^ 2 + (n + 2) ^ 2 = 514 n ^ 2 + n ^ 2 + 4n + 4 = 514 2n ^ 2 + 4n -510 = 0 n = (- 4 + -sqrt (4 ^ 2-4 * 2 * (- 510))) / (2 * 2) n = (- 4 + -sqrt (16 + 4080)) / 4 n = (- 4 + -sqrt (4096)) / 4 n = (- 4 + -64) / 4 n = -68 / 4 = -17 (لأننا نريد رقم ا سالب ا) n + 2 = -15
معرفة الصيغة إلى مجموع الأعداد الصحيحة N أ) ما هو مجموع الأعداد الصحيحة المربعة N على التوالي ، Sigma_ (k = 1) ^ N k ^ 2 = 1 ^ 2 + 2 ^ 2 + cdots + (N-1 ) ^ 2 + N ^ 2؟ ب) مجموع أول عدد صحيح من الأعداد الصحيحة المتتالية N Sigma_ (k = 1) ^ N k ^ 3؟
بالنسبة إلى S_k (n) = sum_ {i = 0} ^ ni ^ k S_1 (n) = (n (n + 1)) / 2 S_2 (n) = 1/6 n (1 + n) (1 + 2 n ) S_3 (n) = ((n + 1) ^ 4- (n + 1) -6S_2 (n) -4S_1 (n)) / 4 لدينا sum_ {i = 0} ^ ni ^ 3 = sum_ {i = 0} ^ n (i + 1) ^ 3 - (n + 1) ^ 3 sum_ {i = 0} ^ ni ^ 3 = sum_ {i = 0} ^ ni ^ 3 + 3sum_ {i = 0} ^ ni ^ 2 + 3sum_ {i = 0} ^ ni + sum_ {i = 0} ^ n 1- (n + 1) ^ 3 0 = 3sum_ {i = 0} ^ ni ^ 2 + 3sum_ {i = 0} ^ ni + sum_ {i = 0} ^ n 1- (n + 1) ^ 3 حل لـ sum_ {i = 0} ^ ni ^ 2 sum_ {i = 0} ^ ni ^ 2 = (n + 1) ^ 3 / 3- (n + 1) / 3-sum_ {i = 0} ^ ni لكن sum_ {i = 0} ^ ni = ((n + 1) n) / 2 لذلك sum_ {i = 0} ^ ni ^ 2 = (n +1) ^ 3 / 3- (n