إجابة:
يرجى الرجوع إلى تفسير.
تفسير:
نحن نعرف ذلك،
السماح
لاحظ أن،
إجابة:
من فضلك، انظر بالأسفل.
تفسير:
إثبات أن (1 + ثانية) / tanx = المهد (x / 2)؟
LHS = (1 + secx) / tanx = (1 + 1 / cosx) / tanx = ((1 + cosx) / إلغاء (cosx)) / (sinx / Cancel (cosx)) = (1 + cosx) / sinx = (2cos ^ 2 (س / 2)) / (2sin (س / 2) * جتا (س / 2)) = المهد (س / 2) = RHS
إثبات الحق في إثبات إقليدس Theorem 1 و 2: ET_1 => overline {BC} ^ {2} = overline {AC} * overline {CH}؛ ET'_1 => bar (AB) ^ {2} = bar (AC) * bar (AH)؛ ET_2 => barAH ^ {2} = overline {AH} * overline {CH}؟ ! [أدخل مصدر الصورة هنا] (https
انظر الدليل في قسم التفسير. دعونا نلاحظ أنه في Delta ABC و Delta BHC ، لدينا ، / _B = / _ BHC = 90 ^ @ ، "common" / _C = "common" / _BCH ، و:. ، / _A = / _ HBC rAr Delta ABC "يشبه" Delta BHC وفق ا لذلك ، فإن الجانبين المقابل لهما متناسبان. :. (AC) / (BC) = (AB) / (BH) = (BC) / (CH) ، أي (AC) / (BC) = (BC) / (CH) rrr BC ^ 2 = AC * CH هذا يثبت ET_1. والدليل على ET'_1 مشابه. لإثبات ET_2 ، نظهر أن Delta AHB و Delta BHC متشابهان. في Delta AHB ، / _AHB = 90 ^ @:. /_ABH+/_BAH=90^@......(1). أيض ا ، / _ABC = 90 ^ @ rArr /_ABH+/_HBC=90^@.........(2). مقارنة (1) و (2) ، /_BAH=/_HBC................ (
إثبات أن المهد 4 × (الخطيئة 5 × + الخطيئة 3 ×) = المهد × (الخطيئة 5 × - الخطيئة 3 ×)؟
# sin a + sin b = 2 sin ((a + b) / 2) cos ((ab) / 2) sin a - sin b = 2 sin ((ab) / 2) cos ((a + b) / 2 ) الجانب الأيمن: cot x (sin 5x - sin 3x) = cot x cdot 2 sin ((5x-3x) / 2) cos ((5x + 3x) / 2) = cos x / sin x cdot 2 sin x cos 4x = 2 cos x cos 4x الجانب الأيسر: cot (4x) (sin 5x + sin 3x) = cot (4x) cdot 2 sin ((5x + 3x) / 2) cos ((5x-3x) / 2) = {cos 4x} / {sin 4x} cdot 2 sin 4x cos x = 2 cos x cos 4 x إنهم متساوون في المربع sqrt #