لإثبات
سمح
الآن
تبين
في بعض الأحيان ، يكون علم حساب المثلثات أقل أهمية في القيام بالرياضيات وأكثر من التعرف على الرياضيات عندما نراها. نحن هنا ندرك
Factoid:
سوف نفترض
خلفية كافية. بمجرد التعرف على صيغة الزاوية الثلاثية ، يكون البرهان سهلا.
دليل:
سمح
تبين أن cos²π / 10 + cos²4π / 10 + cos² 6π / 10 + cos²9π / 10 = 2. أنا مرتبك بعض الشيء إذا جعلت Cos²4π / 10 = cos² (π-6π / 10) و cos²9π / 10 = cos² (π-π / 10) ، فسوف يتحول إلى قيمة سالبة مثل cos (180 ° -theta) = - costheta في الربع الثاني. كيف يمكنني إثبات السؤال؟
من فضلك، انظر بالأسفل. LHS = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 ((6pi) / 10) + cos ^ 2 ((9pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 (pi- (4pi) / 10) + cos ^ 2 (pi- (pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) = 2 * [cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [cos ^ 2 (pi / 2- (4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [sin ^ 2 ((4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * 1 = 2 = RHS
إثبات أن 32sin ^ 4x.cos ^ 2x = cos6x-2cos4x-cos 2x + 2؟
RHS = cos6x-2cos4x-cos2x + 2 = cos6x-cos2x + 2 (1-cos4x) = -2sin ((6x + 2x) / 2) * sin ((6x-2x) / 2) + 2 * 2sin ^ 2 ( 2x) = 4sin ^ 2 (2x) -2sin4x * sin2x = 4sin ^ 2 (2x) -2 * 2 * sin2x * cos2x * sin2x = 4sin ^ 2 (2x) -4sin ^ 2 (2x) * cos2x = 4sin ^ 2 (2x) [1-cos2x] = 4 * (2sinx * cosx) ^ 2 * 2sin ^ 2x = 4 * 4sin ^ 2x * cos ^ 2x * 2sin ^ 2x = 32sin ^ 4x * cos ^ 2x = LHS
إثبات الحق في إثبات إقليدس Theorem 1 و 2: ET_1 => overline {BC} ^ {2} = overline {AC} * overline {CH}؛ ET'_1 => bar (AB) ^ {2} = bar (AC) * bar (AH)؛ ET_2 => barAH ^ {2} = overline {AH} * overline {CH}؟ ! [أدخل مصدر الصورة هنا] (https
انظر الدليل في قسم التفسير. دعونا نلاحظ أنه في Delta ABC و Delta BHC ، لدينا ، / _B = / _ BHC = 90 ^ @ ، "common" / _C = "common" / _BCH ، و:. ، / _A = / _ HBC rAr Delta ABC "يشبه" Delta BHC وفق ا لذلك ، فإن الجانبين المقابل لهما متناسبان. :. (AC) / (BC) = (AB) / (BH) = (BC) / (CH) ، أي (AC) / (BC) = (BC) / (CH) rrr BC ^ 2 = AC * CH هذا يثبت ET_1. والدليل على ET'_1 مشابه. لإثبات ET_2 ، نظهر أن Delta AHB و Delta BHC متشابهان. في Delta AHB ، / _AHB = 90 ^ @:. /_ABH+/_BAH=90^@......(1). أيض ا ، / _ABC = 90 ^ @ rArr /_ABH+/_HBC=90^@.........(2). مقارنة (1) و (2) ، /_BAH=/_HBC................ (