تبين أن 3 ^ (1/3) xx9 ^ (1/9) xx27 ^ (1/27) ... إلى ما لا نهاية = 3 ^ (3/4). كيف؟

تبين أن 3 ^ (1/3) xx9 ^ (1/9) xx27 ^ (1/27) ... إلى ما لا نهاية = 3 ^ (3/4). كيف؟
Anonim

إجابة:

انظر أدناه.

تفسير:

# 3 ^ (1/3) xx9 ^ (1/9) xx27 ^ (1/27) cdots = 3 ^ (1/3) xx 3 ^ (2/9) xx 3 ^ (3/27) cdots = 3 ^ (1/3 + 2/9 + 3/27 + cdots + n / 3 ^ n + cdots) = 3 ^ S #

مع

#S = sum_ (k = 1) ^ oo n / 3 ^ n =؟ #

نحن نعرف ذلك #sum_ (k = 1) ^ oo k x ^ k = x d / (dx) sum_ (k = 1) ^ oo x ^ k #

وكذلك ذلك من أجل #abs x <1 #

#sum_ (k = 1) ^ oo x ^ k = 1 / (1-x) -1 # و # d / (dx) (1 / (1-x) -1) = 1 / (1-x) ^ 2 # ثم

#sum_ (k = 1) ^ oo k x ^ k = x / (1-x) ^ 2 # ولل #x = 1/3 # نحن لدينا

#S = 3/4 # و أخيرا

# 3 ^ S = 3 ^ (3/4) #