كيف يمكنك دمج int (1-2x ^ 2) / ((x + 1) (x-6) (x-7)) باستخدام الكسور الجزئية؟

كيف يمكنك دمج int (1-2x ^ 2) / ((x + 1) (x-6) (x-7)) باستخدام الكسور الجزئية؟
Anonim

إجابة:

#int (1-2x ^ 2) / ((x + 1) (x-6) (x-7)) dx #

# = -1/56 ln abs (x + 1) +71/7 ln abs (x-6) -97/8 ln abs (x-7) + C #

تفسير:

#int (1-2x ^ 2) / ((x + 1) (x-6) (x-7)) dx #

# = int (-1/56 (1 / (x + 1)) + 71/7 (1 / (x-6)) - 97/8 (1 / (x-7))) dx #

# = -1/56 ln abs (x + 1) +71/7 ln abs (x-6) -97/8 ln abs (x-7) + C #

#اللون الابيض)()#

من أين أتت هذه المعاملات؟

# (1-2x ^ 2) / ((x + 1) (x-6) (x-7)) = a / (x + 1) + b / (x-6) + c / (x-7) #

يمكننا حساب # أ ، ب ، ج # باستخدام طريقة Heaviside للتستر:

#a = (1-2 (اللون (الأزرق) (- 1)) ^ 2) / (اللون (الأحمر) (إلغاء (اللون (الأسود) (((اللون (الأزرق) (- 1)) + 1)))) ((اللون (الأزرق) (- 1)) - 6) ((اللون (الأزرق) (- 1)) - 7)) = (-1) / ((- 7) (- 8)) = -1 / 56 #

# ب = (1-2 (اللون (الأزرق) (6)) ^ 2) / (((اللون (الأزرق) (6)) + 1) اللون (الأحمر) (إلغاء (اللون (أسود) (((اللون (الأزرق) (6)) - 6)))) ((اللون (الأزرق) (6)) - 7)) = (-71) / ((7) (- 1)) = 71/7 #

#c = (1-2 (اللون (الأزرق) (7)) ^ 2) / (((اللون (الأزرق) (7)) + 1) ((اللون (الأزرق) (7)) - 6) اللون (أحمر) (إلغاء (اللون (أسود) (((اللون (الأزرق) (7)) - 7)))))) = (-97) / ((8) (1)) = -97 / 8 #

إجابة موجودة بالفعل