تحتاج إلى أن تتحلل
أنت تبحث عن
يمكنك ضرب كلا الجانبين من قبل
وهذا يعني أن لدينا الآن لدمج
كيف يمكنك دمج int 1 / (x ^ 2 (2x-1)) باستخدام الكسور الجزئية؟
2ln | 2x-1 | -2ln | x | + 1 / x + C نحتاج إلى العثور على A و B و C بحيث 1 / (x ^ 2 (2x-1)) = A / x + B / x ^ 2 + C / (2x-1) لجميع x. اضرب كلا الجانبين ب x ^ 2 (2x-1) لتحصل على 1 = Ax (2x-1) + B (2x-1) + Cx ^ 2 1 = 2Ax ^ 2-Ax + 2Bx-B + Cx ^ 2 1 = (2A + C) x ^ 2 + (2B-A) xB معاملات المعادلة تعطينا {(2A + C = 0) ، (2B-A = 0) ، (- B = 1):} وبالتالي لدينا A = -2، B = -1، C = 4. استبدال هذا في المعادلة الأولية ، نحصل على 1 / (x ^ 2 (2x-1)) = 4 / (2x-1) -2 / x-1 / x ^ 2 الآن ، قم بدمجها مصطلح ا بالمصطلح int 4 / (2x-1) dx-int 2 / x dx-int 1 / x ^ 2 dx للحصول على 2ln | 2x-1 | -2ln | x | + 1 / x + C
كيف يمكنك دمج int (x + 1) / (x ^ 2 + 6x) باستخدام الكسور الجزئية؟
= int (x + 1) / (x ^ 2 + 6x) d x int (x + 1) / (x ^ 2 + 6x) d x
كيف يمكنك دمج int (4x ^ 2 + 6x-2) / ((x-1) (x + 1) ^ 2) باستخدام الكسور الجزئية؟
Int (4x ^ 2 + 6x-2) / ((x-1) (x + 1) ^ 2) dx = 2ln (x-1) + 2ln (x + 1) -2 / (x + 1) + C_o قم بإعداد المعادلة لحل المتغيرات A و B و C int (4x ^ 2 + 6x-2) / ((x-1) (x + 1) ^ 2) dx = int (A / (x-1) + B / (x + 1) + C / (x + 1) ^ 2) dx دعنا نحل A و B و C أولا (4x ^ 2 + 6x-2) / ((x-1) (x + 1) ) ^ 2) = A / (x-1) + B / (x + 1) + C / (x + 1) ^ 2 LCD = (x-1) (x + 1) ^ 2 (4x ^ 2 + 6x -2) / ((x-1) (x + 1) ^ 2) = (A (x + 1) ^ 2 + B (x ^ 2-1) + C (x-1)) / ((x- 1) (x + 1) ^ 2) تبسيط (4x ^ 2 + 6x-2) / ((x-1) (x + 1) ^ 2) = (A (x ^ 2 + 2x + 1) + B ( x ^ 2-1) + C (x-1)) / ((x-1) (x + 1) ^ 2) (4x ^ 2 + 6x-2) / ((x-1) (x + 1) ^ 2) = (Ax ^ 2 +