مساحة متوازي الاضلاع 24 سم وقاعدة متوازي الاضلاع 6 سنتيمترات. ما هو ارتفاع متوازي الاضلاع؟
4 سم. مساحة متوازي الاضلاع هي ارتفاع قاعدة xx 24 سم ^ 2 = (ارتفاع 6xx) يعني 24/6 = ارتفاع = 4 سم
مساحة متوازي الاضلاع 486 سم مربع. مجموع قواعدها 54 سم. يقيس كل جانب مائل 14 سم. ما هو الارتفاع؟
الارتفاع 18 سم. مساحة المخطط المتوازي هي: A = b * h إذا كان مجموع القواعد هو 54 ، فكل قاعدة 54-: 2 = 27 (يحتوي المخطط المتوازي على 2 أزواج من جوانب متساوية ومتوازية) لذا يمكننا الآن حساب ذلك: h = A-: b = 486-: 27 = 18
وجهان متقابلان من متوازي الاضلاع يبلغ طولهما 3. إذا كانت إحدى زوايا متوازي الأضلاع تحتوي على زاوية pi / 12 وكانت مساحة متوازي الأضلاع 14 ، فكم من الوقت يبقى الطرفان الآخران؟
بافتراض وجود القليل من علم المثلثات الأساسي ... دع x هو الطول (المشترك) لكل جانب غير معروف. إذا كانت b = 3 هي مقياس قاعدة متوازي الاضلاع ، فليكن h ارتفاعه العمودي. مساحة متوازي الاضلاع هي bh = 14 بما أن b معروفة ، فلدينا = 14/3. من علم حساب المثلثات الأساسي ، الخطيئة (pi / 12) = h / x. قد نجد القيمة الدقيقة للجيب إما باستخدام صيغة نصف الزاوية أو الفرق. sin (pi / 12) = sin (pi / 3 - pi / 4) = sin (pi / 3) cos (pi / 4) - cos (pi / 3) sin (pi / 4) = (sqrt6 - sqrt2) / 4. هكذا ... (sqrt6 - sqrt2) / 4 = h / xx (sqrt6 - sqrt2) = 4 ساعات استبدل قيمة h: x (sqrt6 - sqrt2) = 4 (14/3) x (sqrt6 - sqrt2) = 56 / 3 قس م التعبير الجبري على