إجابة:
آسف قراءة خاطئة ،
تفسير:
لا يمكننا حل هذا دون وجود الجانب الأيمن ، لذلك سأذهب معه
إعادة ترتيب الهدف ،
لأن معظم الآلات الحاسبة أو غيرها من الوسائل ليس لديها زر "المهد" أو
الآن نحن نأخذ واحدة على كلا الجانبين.
في هذه المرحلة نحن بحاجة للحصول على
و
بتطبيق هذا على تعبيرنا لدينا ،
لقد لاحظت أنني استخدمت الحواشي! هناك بعض الخفايا لعكس حساب المثلثات وظائف اخترت لحزم هنا.
1) أسماء الدوال المثلثية العكسية. الاسم الرسمي لدالة علم حساب المثلثات معكوس هو "قوس" - وظيفة علم حساب المثلثات أي.
2) بما أن جميع قيم الظل تحدث مرتين في دائرة الوحدة ،
تبسيط (1- كوس ثيتا + ثيتا الخطيئة) / (1+ كوس ثيتا + ثيتا الخطيئة)؟
= sin (theta) / (1 + cos (theta)) (1-cos (theta) + sin (theta)) / (1 + cos (theta) + sin (theta)) = (1-cos (theta) + sin (theta)) * (1 + cos (theta) + sin (theta)) / (1 + cos (theta) + sin (theta)) ^ 2 = ((1 + sin (theta)) ^ 2-cos ^ 2 (theta)) / (1 + cos ^ 2 (theta) + sin ^ 2 (theta) +2 sin (theta) +2 cos (theta) + 2 sin (theta) cos (theta)) = ((1+ sin (theta)) ^ 2-cos ^ 2 (theta)) / (2 + 2 sin (theta) +2 cos (theta) + 2 sin (theta) cos (theta)) = ((1 + sin (theta) ) ^ 2-cos ^ 2 (theta)) / (2 (1 + cos (theta)) + 2 sin (theta) (1 + cos (theta)) = (1/2) ((1 + sin (theta) ) ^ 2-cos ^ 2 (theta)) / ((1 + cos (theta)) (1 + sin (
كيف يمكنك التعبير عن كوس ثيتا - كوس ^ 2 ثيتا + ثانية ثيتا من حيث الخطيئة ثيتا؟
Sqrt (1-sin ^ 2 theta) - (1-sin ^ 2 theta) + 1 / sqrt (1-sin ^ 2 theta) فقط قم بتبسيطها إذا كنت بحاجة إلى ذلك. من البيانات المعطاة: كيف يمكنك التعبير عن cos theta cos ^ 2 theta + sec theta من حيث sin theta؟ الحل: من الهويات المثلثية الأساسية Sin ^ 2 theta + Cos ^ 2 theta = 1 يتبع cos theta = sqrt (1-sin ^ 2 theta) cos ^ 2 theta = 1-sin ^ 2 theta أيض ا sec theta = 1 / cos theta وبالتالي cos theta cos ^ 2 theta + sec theta sqrt (1-sin ^ 2 theta) - (1-sin ^ 2 theta) + 1 / sqrt (1-sin ^ 2 theta) بارك الله فيك ... وآمل أن يكون التفسير مفيد.
كيف يمكنك تبسيط (المهد (ثيتا)) / (csc (ثيتا) - الخطيئة (ثيتا))؟
= (costheta / sintheta) / (1 / sintheta - sin theta) = (costheta / sintheta) / (1 / sintheta - sin ^ 2theta / sintheta) = (costheta / sintheta) / ((1 - sin ^ 2theta) / sintheta = (costheta / sintheta) / (cos ^ 2theta / sintheta) = costheta / sintheta xx sintheta / cos ^ 2theta = 1 / costheta = sectheta نأمل أن يساعد هذا!