إجابة:
تفسير:
يمكننا استخدام شكل ميل النقطة لإيجاد معادلة. الصيغة العامة لمنحدر النقطة هي:
يمكننا أيضا كتابة هذا في شكل تقاطع الميل:
وفي شكل قياسي:
ويبدو مثل هذا:
رسم بياني {-1 / 2x + 5/2 -9.92 ، 10.08 ، -2.04 ، 7.96}
معادلة الخط هي 2x + 3y - 7 = 0 ، أوجد: - (1) ميل الخط (2) معادلة الخط العمودي على الخط المعطى ويمر خلال تقاطع الخط x-y + 2 = 0 و 3 x + y-10 = 0؟
-3x + 2y-2 = 0 لون (أبيض) ("ddd") -> color (أبيض) ("ddd") y = 3 / 2x + 1 الجزء الأول في الكثير من التفاصيل يوضح كيفية عمل المبادئ الأولى. مرة واحدة اعتدت على هذه واستخدام اختصارات سوف تستخدم خطوط أقل كثيرا. color (blue) ("حدد تقاطع المعادلات الأولية") x-y + 2 = 0 "" ....... المعادلة (1) 3x + y-10 = 0 "" .... Equation ( 2) اطرح x من طرفي Eqn (1) إعطاء -y + 2 = -x اضرب كلا الجانبين ب (-1) + y-2 = + x "" .......... المعادلة (1_a ) باستخدام Eqn (1_a) بديلا عن x في Eqn (2) اللون (الأخضر) (3color (red) (x) + y-10 = 0color (أبيض) ("ddd") -> color (أبيض) (
معادلة الخط هي -3y + 4x = 9. كيف تكتب معادلة الخط الموازي للخط ويمر عبر النقطة (-12،6)؟
Y-6 = 4/3 (x + 12) سوف نستخدم نموذج التدرج النقطي حيث لدينا بالفعل نقطة سوف يمر بها الخط (-12،6) وكلمة موازية تعني أن التدرج اللوني للخطين يجب أن يكون هو نفسه. من أجل إيجاد تدرج الخط الموازي ، يجب أن نجد تدرج الخط الموازي له. هذا الخط هو -3y + 4x = 9 والذي يمكن تبسيطه في y = 4 / 3x-3. هذا يعطينا التدرج 4/3 الآن لكتابة المعادلة التي نضعها في هذه الصيغة y-y_1 = m (x-x_1) ، كانت (x_1 ، y_1) هي النقطة التي يتم تشغيلها ومن خلالها m هي التدرج اللوني.
ما هي المعادلة في شكل نقطة المنحدر وشكل اعتراض المنحدر من خط معين المنحدر 3 5 الذي يمر عبر نقطة (10 ، 2)؟
شكل نقطة المنحدر: y-y_1 = m (x-x_1) m = slope و (x_1، y_1) هو شكل تقاطع الميل: y = mx + c 1) y - (- 2) = 3/5 ( x-10) => y + 2 = 3/5 (x) -6 5y-3x-40 = 0 2) y = mx + c -2 = 3/5 (10) + c => - 2 = 6 + c => c = -8 (والذي يمكن ملاحظته من المعادلة السابقة أيض ا) y = 3/5 (x) -8 => 5y-3x-40 = 0