إجابة:
المجال هو
تفسير:
نظر ا لأن الجذور المربعة ت عر ف فقط عندما يكون التعبير تحت الجذر التربيعي غير سالب ، لإيجاد المجال ، قمنا بتعيين التعبير تحت الجذر التربيعي أكبر من أو يساوي الصفر:
إجابة:
تفسير:
أولا أنت تعرف أنه لا يمكن أن يكون هناك سلبي تحت الجذر التربيعي
اذن متى
اذن متى
لذلك المجال هو
ما هو (sqrt (5+) sqrt (3)) / (sqrt (3+) sqrt (3+) sqrt (5)) - (sqrt (5 -) sqrt (3)) / (sqrt (3+) sqrt (3-) الجذر التربيعي (5))؟
2/7 نأخذ ، A = (sqrt5 + sqrt3) / (sqrt3 + sqrt3 + sqrt5) - (sqrt5-sqrt3) / (sqrt3 + sqrt3-sqrt5) = (sqrt5 + sqrt3) / (2sqrt3 + sqrt5) - -sqrt3) / (2sqrt3-sqrt5) = (sqrt5 + sqrt3) / (2sqrt3 + sqrt5) - (sqrt5-sqrt3) / (2sqrt3-sqrt5) = ((sqrt5 + sqrt3) (2sqrt3-sqrt5)) - (sqrt5-sqrt3) ) (2sqrt3 + sqrt5)) / ((2sqrt3 + sqrt5) (2sqrt3-sqrt5) = ((2sqrt15-5 + 2 * 3-sqrt15)) - (2sqrt15 + 5-2 * 3-sqrt15)) / ((2sqrt3) ^ 2- (sqrt5) ^ 2) = (إلغاء (2sqrt15) -5 + 2 * 3cancel (-sqrt15) - إلغاء (2sqrt15) -5 + 2 * 3 + إلغاء (sqrt15)) / (12-5) = ( -10 + 12) / 7 = 2/7 لاحظ أنه إذا كانت المقامات هي (sqrt3 + sqrt (3 + sqrt5)) و (sqrt3 + sqrt (3-
كيف يمكنك تبسيط (1 / sqrt (a-1) + sqrt (a + 1)) / (1 / sqrt (a + 1) -1 / sqrt (a-1)) div sqrt (a + 1) / ( (a-1) sqrt (a + 1) - (a + 1) sqrt (a-1)) ، a> 1؟
تنسيق رياضيات ضخم ...> اللون (الأزرق) (((1 / sqrt (a-1) + sqrt (a + 1)) / (1 / sqrt (a + 1) -1 / sqrt (a-1)) ) / (sqrt (a + 1) / ((a-1) sqrt (a + 1) - (a + 1) sqrt (a-1))) = اللون (أحمر) (((1 / sqrt (a- 1) + sqrt (a + 1)) / ((sqrt (a-1) -sqrt (a + 1)) / (sqrt (a + 1) cdot sqrt (a-1)))) / / (sqrt (a +1) / (sqrt (a-1) cdot sqrt (a-1) cdot sqrt (a + 1) -sqrt (a + 1) cdot sqrt (a + 1) sqrt (a-1))) = اللون ( أزرق) (((1 / sqrt (a-1) + sqrt (a + 1)) / ((sqrt (a-1) -sqrt (a + 1)) / (sqrt (a + 1) cdot sqrt (a -1)))) / (sqrt (a + 1) / (sqrt (a + 1) cdot sqrt (a-1) (sqrt (a-1) -sqrt (a + 1))) = اللون (أحمر) ((1 / sqrt (a-1) + sqrt
الأطوال الجانبية للمثلث الحاد هي sqrtn و sqrt (n + 1) و sqrt (n + 2). كيف تجد ن؟
إذا كان المثلث مثلث ا صحيح ا ، فإن مربع الجانب الأكبر يساوي مجموع مربعات الجوانب الصغيرة. لكن المثلث حادة بزاوية واحدة. لذا فإن مربع الجانب الأكبر أقل من مجموع مربعات الجوانب الصغيرة. وبالتالي (sqrt (n + 2)) ^ 2 <(sqrtn) ^ 2 + (sqrt (n + 1)) ^ 2 => n + 2 <n + n + 1 => n> 1