عندما يتم تقسيم متعدد الحدود على (x + 2) ، فإن الباقي هو -19. عندما يتم تقسيم نفس كثير الحدود على (x-1) ، الباقي هو 2 ، كيف يمكنك تحديد الباقي عندما يتم تقسيم متعدد الحدود على (x + 2) (x-1)؟

عندما يتم تقسيم متعدد الحدود على (x + 2) ، فإن الباقي هو -19. عندما يتم تقسيم نفس كثير الحدود على (x-1) ، الباقي هو 2 ، كيف يمكنك تحديد الباقي عندما يتم تقسيم متعدد الحدود على (x + 2) (x-1)؟
Anonim

إجابة:

نحن نعرف ذلك #f (1) = 2 # و # F (-2) = - 19 # من نظرية الباقي

تفسير:

اكتشف الآن ما تبقى من كثير الحدود f (x) عند القسمة على (x-1) (x + 2)

الباقي سيكون على شكل Ax + B ، لأنه الباقي بعد القسمة على تربيعي.

يمكننا الآن مضاعفة المقسوم على ضرب القسمة Q …

#f (x) = Q (x-1) (x + 2) + Ax + B #

بعد ذلك ، أدخل 1 و -2 لـ x …

#f (1) = Q (1-1) (1 + 2) + A (1) + B = A + B = 2 #

#f (-2) = Q (-2-1) (- 2 + 2) + A (-2) + B = -2A + B = -19 #

حل هاتين المعادلتين ، نحصل على A = 7 و B = -5

بقية # = الفأس + B = 7x-5 #