كيف تقسم (2i -4) / (7 i -2) بشكل مثلثي؟

كيف تقسم (2i -4) / (7 i -2) بشكل مثلثي؟
Anonim

إجابة:

# (2i-4) / (7i-2) = (2sqrt (265)) / 53 cos 47.48^@+i*sin 47.48 ^ @ #

تفسير:

الحل:

# 2I-4 = #

#sqrt (4 + 16) cos (tan ^ -1 (-1/2)) + i * sin (tan ^ -1 (-1/2)) #

#sqrt (20) cos (tan ^ -1 (-1/2)) + i * sin (tan ^ -1 (-1/2)) #

# 7I-2 = #

#sqrt (4 + 49) cos (tan ^ -1 (-7/2)) + i * sin (tan ^ -1 (-7/2)) #

# (2I-4) / (7I-2) = #

#sqrt (20) / sqrt (53) cos (tan ^ -1 (-1/2) -tan ^ -1 (-1/2)) + i * sin (tan ^ -1 (-1/2) - ^ ^ -1 (-1/2)) #

# (2i-4) / (7i-2) = (2sqrt (265)) / 53 cos 47.48^@+i*sin 47.48 ^ @ #

بارك الله فيكم ….. اتمنى التفسير مفيد