يتجاوز طول المستطيل عرضه بمقدار 4 سم. إذا زاد الطول بمقدار 3 سم وزاد العرض بمقدار 2 سم ، فستتجاوز المساحة الجديدة المساحة الأصلية بمقدار 79 سم مربع. كيف يمكنك العثور على أبعاد المستطيل المعطى؟
أبعاد 13 سم و 17 سم × × 4 هي الأبعاد الأصلية. x + 2 و x + 7 هي الأبعاد الجديدة x (x + 4) + 79 = (x + 2) (x + 7) x ^ 2 + 4x + 79 = x ^ 2 + 7x + 2x + 14 x ^ 2 + 4x + 79 = x ^ 2 + 9x + 14 4x + 79 = 9x + 14 79 = 5x + 14 65 = 5x x = 13
مجموع الرقمين هو 12. عندما يتم إضافة الرقم الأول ثلاث مرات إلى 5 أضعاف الرقم الثاني ، يكون الرقم الناتج هو 44. كيف يمكنك العثور على الرقمين؟
الرقم الأول هو 8 والرقم الثاني هو 4. سنحول مشكلة الكلمة إلى معادلة لتسهيل حلها. سأقوم باختصار "الرقم الأول" إلى F و "الرقم الثاني إلى overbrace S. stackrel (F + S)" مجموع الرقمين "stackrel (=) overbrace" هو "stackrel (12) overbrace" 12 "AND : تراكب stackrel (3F) "ثلاثة أضعاف الرقم الأول" "" تراكب stackrel (+) "تضاف إلى" overbrace "" stackrel (5S) "خمسة أضعاف الرقم الثاني" "" stackrel (= 44) overbrace " العدد هو 44 "المعادلتان التاليتان من مجموعتي المعلومات هما: F + S = 12 3F + 5S = 44 الآن ، دعنا نغير المعادلة
رقم واحد هو 4 أقل من 3 مرات في الرقم الثاني. إذا 3 مرات أكثر من مرتين انخفض الرقم الأول بمقدار 2 مرات الرقم الثاني ، والنتيجة هي 11. استخدم طريقة الاستبدال. ما هو الرقم الأول؟
N_1 = 8 n_2 = 4 رقم واحد هو 4 أقل من -> n_1 =؟ - 4 3 مرات "........................." -> n_1 = 3؟ -4 لون الرقم الثاني (بني) (".........." -> n_1 = 3n_2-4) لون (أبيض) (2/2) إذا كان 3 أكثر "... ....................................... "->؟ +3 من مرتين الرقم الأول "............" -> 2n_1 + 3 ينخفض بـ "......................... .......... "-> 2n_1 + 3-؟ 2 مرات الرقم الثاني "................." -> 2n_1 + 3-2n_2 والنتيجة هي 11 لون (بني) (".......... ........................... "-> 2n_1 + 3-2n_2 = 11) '~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~