إجابة:
تفسير:
الخطوة الأولى هي حساب التدرج اللوني (m) للخط الذي يربط النقطتين باستخدام
#color (أزرق) "صيغة متدرجة" #
# m = (y_2 - y_1) / (x_2 - x_1) # أين
# (x_1 ، y_1) "و" (x_2 ، y_2) "هي مزيج من نقطتين" # سمح
# (x_1 ، y_1) = (24 ، -2) "و" (x_2 ، y_2) = (18،19) # استبدال هذه القيم في صيغة ل م.
#rArr m = (19 + 2) / (18-24) = 21 / -6 = -7/2 # الآن إذا 2 خطوط مع التدرجات
# m_1 "و m_2 # عموديثم منتجاتها
# m_1. m_2 = -1 # سمح
# m_2 "كن متدرج ا للخط العمودي" #
#rArr m_2 = (-1) / m_1 = -1 / (- 7/2) = 2/7 #
معادلة الخط هي 2x + 3y - 7 = 0 ، أوجد: - (1) ميل الخط (2) معادلة الخط العمودي على الخط المعطى ويمر خلال تقاطع الخط x-y + 2 = 0 و 3 x + y-10 = 0؟
-3x + 2y-2 = 0 لون (أبيض) ("ddd") -> color (أبيض) ("ddd") y = 3 / 2x + 1 الجزء الأول في الكثير من التفاصيل يوضح كيفية عمل المبادئ الأولى. مرة واحدة اعتدت على هذه واستخدام اختصارات سوف تستخدم خطوط أقل كثيرا. color (blue) ("حدد تقاطع المعادلات الأولية") x-y + 2 = 0 "" ....... المعادلة (1) 3x + y-10 = 0 "" .... Equation ( 2) اطرح x من طرفي Eqn (1) إعطاء -y + 2 = -x اضرب كلا الجانبين ب (-1) + y-2 = + x "" .......... المعادلة (1_a ) باستخدام Eqn (1_a) بديلا عن x في Eqn (2) اللون (الأخضر) (3color (red) (x) + y-10 = 0color (أبيض) ("ddd") -> color (أبيض) (
ما هو ميل أي خط عمودي على الخط المار (0،0) و (-1،1)؟
1 هو ميل أي خط عمودي على الخط. الميل هو ارتفاع التشغيل (y_2 -y_1) / (x_2-x_1). المنحدر العمودي على أي خط هو عكسية سلبية. انحدار هذا الخط سالب ، لذلك يكون العمق له 1.
ما هو ميل أي خط عمودي على الخط المار (0،6) و (18،4)؟
ميل أي خط عمودي على الخط المار خلال (0،6) و (18،4) هو 9. ميل الخط عبر (0،6) و (18،4) هو m_1 = (y_2-y_1) / (x_2-x_1) = (4-6) / (18-0) = (-2) / 18 = -1 / 9 ناتج منحدرات الخطوط العمودية هو m_1 * m_2 = -1: .m_2 = -1 / m_1 = -1 / (- 1/9) = 9. لذلك ميل أي خط عمودي على الخط المار خلال (0،6) و (18،4) هو 9 [الجواب]