إجابة:
تفسير:
صيغة المسافة للإحداثيات القطبية هي
أين
سمح
وبالتالي المسافة بين النقاط المعينة هي
إجابة:
تفسير:
(هذه محاولة لاستعادة إجابتي الأصلية)
باستخدام البصيرة المشتركة بدلا من تطبيق نظرية فيثاغورس و
المسافة بين أي إحداثيات قطبية بنفس الزاوية هي الفرق في نصف قطرها.
كيف يمكنك تحويل (-1 ، 405 ^ circ) من الإحداثيات القطبية إلى الإحداثيات الديكارتية؟
(-sqrt2 / 2، -sqrt2 / 2) (r، theta) -> (x، y) => (rcostheta، rsintheta) (r، theta) = (- 1،405 ^ circ) (x، y) = (- كوس (405)، - الخطيئة (405)) = (- sqrt2 / 2، -sqrt2 / 2)
كيف يمكنك تحويل الإحداثيات الديكارتية (10،10) إلى الإحداثيات القطبية؟
الديكارتية: (10 ؛ 10) القطبية: (10sqrt2 ؛ pi / 4) تتمثل المشكلة في الرسم البياني أدناه: في الفضاء ثنائي الأبعاد ، يتم العثور على نقطة بإحداثيتين: الإحداثيات الديكارتية هي مواضع رأسية وأفقية (x؛ y ). الإحداثيات القطبية هي المسافة من الأصل والميل مع الأفقي (R ، ألفا). تخلق المتجهات الثلاثة vecx و vecy و vecR مثلث ا صحيح ا يمكنك من خلاله تطبيق نظرية فيثاغوري وخصائص مثلثية. وهكذا ، ستجد: R = sqrt (x ^ 2 + y ^ 2) alpha = cos ^ (- 1) (x / R) = sin ^ (- 1) (y / R) في قضيتك ، أي: R = sqrt (10 ^ 2 + 10 ^ 2) = sqrt (100 + 100) = sqrt200 = 10sqrt2 alpha = sin ^ (- 1) (10 / (10sqrt2)) = sin ^ (- 1) (1 / sqrt2) = 45 ° = بي / 4
ما هي المسافة بين الإحداثيات القطبية التالية ؟: (7 ، (5pi) / 4) ، (2 ، (9pi) / 8)
P_1P_2 = sqrt (53-28cos ((pi) / 8)) ~~ 5.209 P_1P_2 = sqrt (r_1 ^ 2 + r_2 ^ 2-2r_1r_2cos (theta_2-theta_1)) r_1 = 7 ، theta_1 = (5pi) / 4؛ r_2 = 2 ، theta_2 = (9pi) / 8 P_1P_2 = sqrt (7 ^ 2 + 2 ^ 2-2 * 7 * 2cos ((9pi) / 8- (5pi) / 4)) P_1P_2 = sqrt (49 + 4-28cos (- (pi) / 8) P_1P_2 = sqrt (53-28cos ((pi) / 8)) ~~ 5.209