إجابة:
تفسير:
النموذج القياسي لمعادلة دائرة نصف قطرها
هذه المعادلة تعكس حقيقة أن مثل هذه الدائرة تتكون من جميع النقاط في الطائرة التي هي المسافة
وضع هذا يساوي
ما هو الشكل القياسي لمعادلة الدائرة ذات مركز الدائرة عند (-15،32) ويمر عبر النقطة (-18،21)؟
(x + 15) ^ 2 + (y-32) ^ 2 = 130 النموذج القياسي للدائرة المتمركزة عند (a ، b) ولديها نصف قطر r (xa) ^ 2 + (yb) ^ 2 = r ^ 2 . لذلك في هذه الحالة لدينا المركز ، لكننا بحاجة إلى إيجاد نصف القطر ويمكننا القيام بذلك من خلال إيجاد المسافة من المركز إلى النقطة المعطاة: d ((- 15،32) ؛ (- 18،21)) = sqrt ((-18 - (- 15)) ^ 2+ (21-32) ^ 2) = sqrt130 وبالتالي فإن معادلة الدائرة هي (x + 15) ^ 2 + (y-32) ^ 2 = 130
ما هو الشكل القياسي لمعادلة الدائرة ذات المركز ونصف قطر الدائرة x ^ 2 + y ^ 2 - 4x + 8y - 80؟
(x-2) ^ 2 + (y - (- 4)) ^ 2 = 10 ^ 2 النموذج القياسي العام لمعادلة الدائرة هو اللون (أبيض) ("XXX") (xa) ^ 2 + (yb ) ^ 2 = r ^ 2 لدائرة ذات مركز (a ، b) ونصف قطرها r لون معطى (أبيض) ("XXX") x ^ 2 + y ^ 2-4x + 8y-80 (= 0) لون (أبيض ) ("XX") (ملاحظة: أضفت = 0 للسؤال ليكون له معنى). يمكننا تحويل هذا إلى النموذج القياسي من خلال الخطوات التالية: انقل اللون (البرتقالي) ("الثابت") إلى الجانب الأيمن وقم بتجميع مصطلحات اللون (الأزرق) (س) واللون (الأحمر) (ص) بشكل منفصل على اليسار. اللون (أبيض) ("XXX") اللون (الأزرق) (x ^ 2-4x) + اللون (الأحمر) (y ^ 2 + 8y) = اللون (البرتقالي) (80) أكم
الدائرة A لها دائرة نصف قطرها 2 ومركز (6 ، 5). الدائرة B لها دائرة نصف قطرها 3 ومركز (2 ، 4). إذا تم ترجمة الدائرة B بواسطة <1 ، 1> ، هل تتداخل مع الدائرة A؟ إذا لم يكن الأمر كذلك ، فما هي المسافة بين النقاط في كلتا الدائرتين؟
"الدوائر المتداخلة"> "ما يتعين علينا القيام به هنا هو مقارنة المسافة (د)" "بين المراكز بمجموع نصف القطر" • "إذا كان مجموع نصف القطر"> د "ثم تداخل الدوائر" • "إذا كان مجموع نصف القطر "<d" ثم لا يوجد تداخل "" قبل حساب d ، نحتاج إلى العثور على المركز الجديد "" من B بعد الترجمة المعطاة "" تحت الترجمة "<1،1> (2،4) إلى (2 + 1 ، 4 + 1) إلى (3،5) larrcolor (أحمر) "مركز جديد لـ B" "لحساب d استخدم صيغة المسافة" بالألوان (الزرقاء) "d = sqrt ((x_2-x_1) ^ 2 + (y_2- y_1) ^ 2) "let" (x_1، y