يبلغ نصف قطر الدائرة الأكبر ضعف طول دائرة نصف قطرها. مساحة الدونت 75 بي. العثور على دائرة نصف قطرها أصغر (الداخلية) الدائرة.؟
أصغر دائرة نصف قطرها 5 اسمحوا r = نصف قطر الدائرة الداخلية. ثم نصف قطر الدائرة الأكبر هو 2r من المرجع نحصل على المعادلة الخاصة بمساحة الحلقة: A = pi (R ^ 2-r ^ 2) البديل 2r لـ R: A = pi ((2r) ^ 2- r ^ 2) تبسيط: A = pi ((4r ^ 2- r ^ 2) A = 3pir ^ 2 البديل في المنطقة المحددة: 75pi = 3pir ^ 2 قس م كلا الجانبين على 3pi: 25 = r ^ 2 r = 5
الدائرة A لها دائرة نصف قطرها 2 ومركز (6 ، 5). الدائرة B لها دائرة نصف قطرها 3 ومركز (2 ، 4). إذا تم ترجمة الدائرة B بواسطة <1 ، 1> ، هل تتداخل مع الدائرة A؟ إذا لم يكن الأمر كذلك ، فما هي المسافة بين النقاط في كلتا الدائرتين؟
"الدوائر المتداخلة"> "ما يتعين علينا القيام به هنا هو مقارنة المسافة (د)" "بين المراكز بمجموع نصف القطر" • "إذا كان مجموع نصف القطر"> د "ثم تداخل الدوائر" • "إذا كان مجموع نصف القطر "<d" ثم لا يوجد تداخل "" قبل حساب d ، نحتاج إلى العثور على المركز الجديد "" من B بعد الترجمة المعطاة "" تحت الترجمة "<1،1> (2،4) إلى (2 + 1 ، 4 + 1) إلى (3،5) larrcolor (أحمر) "مركز جديد لـ B" "لحساب d استخدم صيغة المسافة" بالألوان (الزرقاء) "d = sqrt ((x_2-x_1) ^ 2 + (y_2- y_1) ^ 2) "let" (x_1، y
النظر في 3 دوائر متساوية من دائرة نصف قطرها ص داخل دائرة معينة من دائرة نصف قطرها R لمس كل منهما الآخر ودائرة معينة كما هو مبين في الشكل ، ثم مساحة المنطقة المظللة تساوي؟
يمكننا تكوين تعبير لمنطقة المنطقة المظللة مثل: A_ "shaded" = piR ^ 2 - 3 (pir ^ 2) -A_ "center" حيث A_ "center" هي منطقة المقطع الصغير بين الثلاثة دوائر أصغر. للعثور على مساحة هذا ، يمكننا رسم مثلث من خلال ربط مراكز الدوائر البيضاء الثلاث الأصغر. ونظر ا لأن كل دائرة لها دائرة نصف قطرها r ، فإن طول كل جانب من المثلث هو 2r والمثلث متساوي الأضلاع لذا يكون لزوايا 60 ^ o لكل منهما. يمكننا إذن القول أن زاوية المنطقة الوسطى هي مساحة هذا المثلث مطروح ا منها القطاعات الثلاثة للدائرة. ارتفاع المثلث هو ببساطة sqrt ((2r) ^ 2-r ^ 2) = sqrt (3) r ^ ، وبالتالي فإن مساحة المثلث 1/2 * base * height = 1/2 * 2r