إجابة:
تفسير:
هذه علاقة ثابتة ، بمعنى أنه مهما كانت الدائرة كبيرة أو صغيرة ، فسيكون المحيط دائم ا
فمثلا:
قل أن لديك دائرة بقطر
سوف يكون محيط
(
إذا أعطيت نصف القطر ، كل ما عليك فعله هو مضاعفة نصف القطر للحصول على القطر المقابل. أو ، يمكنك الانتقال مباشرة من دائرة نصف قطرها إلى محيط مع المعادلة
نأمل أن يكون هذا ساعد!
تحدد المعادلة x ^ 2 + y ^ 2 = 25 الدائرة عند الأصل ونصف قطرها 5. الخط y = x + 1 يمر عبر الدائرة. ما هي النقطة (النقاط) التي يتقاطع فيها الخط مع الدائرة؟
هناك نقطتان من التقاطع: A = (- 4؛ -3) و B = (3؛ 4) لمعرفة ما إذا كانت هناك أي نقاط تقاطع يجب حل نظام المعادلات بما في ذلك معادلات الدائرة والخط: {(x ^ 2 + y ^ 2 = 25) ، (y = x + 1):} إذا استبدلت x + 1 لـ y في المعادلة الأولى ، فستحصل على: x ^ 2 + (x + 1) ^ 2 = 25 x ^ 2 + x ^ 2 + 2x + 1 = 25 2x ^ 2 + 2x-24 = 0 يمكنك الآن تقسيم كلا الجانبين على 2 x ^ 2 + x-12 = 0 Delta = 1 ^ 2-4 * 1 * (- 12) Delta = 1 + 48 = 49 sqrt (Delta) = 7 x_1 = (- 1-7) / 2 = -4 x_2 = (- 1 + 7) / 2 = 3 الآن يتعين علينا استبدال القيم المحسوبة بـ x لإيجاد القيم المقابلة لـ y y_1 = x_1 + 1 = -4 + 1 = -3 y_2 = x_2 + 1 = 3 + 1 = 4 الإجابة: هناك نقطتان للتقاط
محيط خط الاستواء من الأرض حوالي 4 * 10 ^ 4 كيلومترات. محيط خط الاستواء من كوكب المشتري حوالي 439263.8 كيلومتر. حول كم مرة يكون محيط كوكب المشتري أكبر من محيط الأرض؟
ما عليك سوى تقسيم 439263.8 / 40000 = 10.98 محيط كوكب المشتري أكبر بنحو 11 مرة من محيط الأرض.
الدائرة A لها دائرة نصف قطرها 2 ومركز (6 ، 5). الدائرة B لها دائرة نصف قطرها 3 ومركز (2 ، 4). إذا تم ترجمة الدائرة B بواسطة <1 ، 1> ، هل تتداخل مع الدائرة A؟ إذا لم يكن الأمر كذلك ، فما هي المسافة بين النقاط في كلتا الدائرتين؟
"الدوائر المتداخلة"> "ما يتعين علينا القيام به هنا هو مقارنة المسافة (د)" "بين المراكز بمجموع نصف القطر" • "إذا كان مجموع نصف القطر"> د "ثم تداخل الدوائر" • "إذا كان مجموع نصف القطر "<d" ثم لا يوجد تداخل "" قبل حساب d ، نحتاج إلى العثور على المركز الجديد "" من B بعد الترجمة المعطاة "" تحت الترجمة "<1،1> (2،4) إلى (2 + 1 ، 4 + 1) إلى (3،5) larrcolor (أحمر) "مركز جديد لـ B" "لحساب d استخدم صيغة المسافة" بالألوان (الزرقاء) "d = sqrt ((x_2-x_1) ^ 2 + (y_2- y_1) ^ 2) "let" (x_1، y