إجابة:
تفسير:
نحن إعادة تسمية في تدوين قياسي:
قاعدة لدينا مثلث متساوي الساقين هو
نقطة الوسط من
الاتجاه متجه من
الاتجاه متجه من عمودي لها هو
نحن نحتاج أن نذهب
هذا فوضوي بعض الشيء. هل هذا صحيح؟ دعنا نسأل ألفا.
عظيم! ألفا يتحقق من متساوي الساقين والمنطقة
محيط المثلث 29 ملم. طول الجانب الأول هو ضعف طول الجانب الثاني. طول الجانب الثالث هو 5 أكثر من طول الجانب الثاني. كيف يمكنك العثور على الأطوال الجانبية للمثلث؟
S_1 = 12 s_2 = 6 s_3 = 11 محيط المثلث هو مجموع أطوال جميع جوانبه. في هذه الحالة ، يتم إعطاء محيط 29 مم. لذلك في هذه الحالة: s_1 + s_2 + s_3 = 29 لذلك نقوم بحل لطول الجوانب ، نقوم بترجمة البيانات في المعطى إلى نموذج المعادلة. "طول الجانب الأول هو ضعف طول الجانب الثاني" ، ولحل هذه المشكلة ، نخصص متغير ا عشوائي ا إما s_1 أو s_2. على سبيل المثال ، أود أن أكون x طول الجانب الثاني لتجنب وجود كسور في معادلي. لذلك نحن نعرف أن: s_1 = 2s_2 ولكن بما أننا سمحنا s_2 أن يكون x ، فإننا نعرف الآن: s_1 = 2x s_2 = x "طول الجانب الثالث هو 5 أكثر من طول الجانب الثاني." ترجمة العبارة أعلاه إلى نموذج المعادلة ... s_3 = s_2 +
المثلث متساوي الساقين له جوانب A و B و C مع جوانب B و C متساوية في الطول. إذا كان الجانب A ينتقل من (1 ، 4) إلى (5 ، 1) وكانت مساحة المثلث 15 ، فما هي الإحداثيات الممكنة للزاوية الثالثة للمثلث؟
تشكل القارتان قاعدة بطول 5 ، لذلك يجب أن يكون الارتفاع 6 للوصول إلى منطقة 15. القدم هي نقطة الوسط للنقاط ، وست وحدات في أي اتجاه عمودي يعطي (33/5 ، 73/10) أو (- 3/5 ، - 23/10). نصيحة للمحترفين: حاول التمسك بتقليد الحروف الصغيرة لجوانب المثلث والعواصم لرؤوس المثلث. لقد حصلنا على نقطتين ومنطقة مثلث متساوي الساقين. تشكل النقطتان الأساس ، ب = sqrt {(5-1) ^ 2 + (1-4) ^ 2} = 5. القدم F للارتفاع هي النقطة الوسطى للنقطتين ، F = ((1 + 5) / 2 ، (4 + 1) / 2) = (3 ، 5/2) متجه الاتجاه من بين النقطتين هو ( 1-5 ، 4-1) = (- 4،3) مع حجم 5 كما تحسب فقط. نحصل على الاتجاه الاتجاهي للعمودي من خلال مبادلة النقاط وإلغاء واحدة منها: (3،4) والتي ي
المثلث متساوي الساقين والحاد. إذا كانت إحدى زوايا المثلث تبلغ 36 درجة ، فما هو قياس أكبر زاوية (زوايا) للمثلث؟ ما هو مقياس أصغر زاوية (زوايا) للمثلث؟
الإجابة على هذا السؤال سهلة ولكنها تتطلب بعض المعرفة الرياضية العامة والحس السليم. مثلث متساوي الساقين: - يسمى المثلث ذو الجانبين فقط متساويان مثلث متساوي الساقين. لدى مثلث متساوي الساقين أيض ا ملائكة متساويتان. المثلث الحاد: - المثلث الذي تكون جميع ملائكته أكبر من 0 ^ @ وأقل من 90 ^ @ ، أي ، كل الملائكة حادة تسمى مثلث حاد. المثلث المعطى لديه زاوية 36 ^ @ وكلاهما متساوي الساقين والحاد. يعني أن هذا المثلث لديه اثنين من الملائكة على قدم المساواة. الآن هناك احتمالان للملائكة. (ط) إما أن يكون الملاك المعروف 36 ^ @ متساوي ا والملاك الثالث غير متساو . (2) أو الملائكة غير المعروفتين متساويتان والملاك المعروف غير متساوي. واحد فقط