إجابة:
نعم…
تفسير:
طالما أن مساحة السطح المستعرضة ، تظل الشحنة على الجزيئات ، وكثافة حامل الشحنة ثابتة ، ثم نعم.
#أنا# = الحالي (#ا# )# ن # = كثافة حامل الشحنة (عدد حاملات الشحن لكل وحدة حجم) (# م ^ -3 # )#ا# = مساحة سطح المقطع العرضي (# م ^ 2 # )# ف # = تهمة على الجزيئات الفردية (# C # )#الخامس# = سرعة الانجراف (# مللي ^ -1 # )
كما قلت سابقا ، إذا
طريقة أخرى للتفكير في الأمر ،
استغرق 3 ساعات لركوب قارب 18 كم ضد التيار. استغرقت رحلة العودة مع التيار 1 1/2 ساعة. كيف يمكنك العثور على سرعة القارب في المياه الساكنة؟
السرعة 9 كم / ساعة. سرعة القارب = Vb سرعة النهر = Vr إذا استغرق الأمر 3 ساعات لتغطية 18 كم ، فإن متوسط السرعة = 18/3 = 6 كم / ساعة بالنسبة لرحلة العودة ، يكون متوسط السرعة = 18 / 1.5 = 12 كم / ساعة {(Vb -Vr = 6) ، (Vb + Vr = 12):} وفق ا للمعادلة الثانية ، Vr = 12-Vb استبدال في المعادلة الأولى: Vb- (12-Vb) = 6) Vb-12 + Vb = 6 2Vb = 6 + 12 Vb = 18/2 = 9
سرعة القارب الشراعي لصالح التيار في النهر هي 18 كم / ساعة وضد التيار ، 6 كم / ساعة. في أي اتجاه يجب أن يتم توجيه القارب للوصول إلى الجانب الآخر من النهر وما ستكون سرعة القارب؟
دع v_b و v_c يمثلان على التوالي سرعة القارب الشراعي في الماء الثابت وسرعة التيار في النهر. بالنظر إلى أن سرعة القارب الشراعي لصالح التيار في النهر هي 18 كم / ساعة وضد التيار ، فهو 6 كم / ساعة. يمكننا كتابة v_b + v_c = 18 ........ (1) v_b-v_c = 6 ........ (2) مضيفا (1) و (2) نحصل على 2v_b = 24 => v_b = 12 "km / hr" طرح (2) من (2) نحصل على 2v_c = 12 => v_b = 6 "km / hr" دعونا الآن نعتبر أن ثيتا هي الزاوية مقابل التيار الذي سيتم صيانته بواسطة القارب أثناء عبور النهر للوصول إلى الجانب المقابل من النهر مباشرة بالإبحار. عندما يصل القارب إلى الجهة المقابلة للنهر مباشرة ، يجب أن يوازن الجزء المعقد من سرعت
بينما كان في إجازة ، ذهب كيفن للسباحة في بحيرة قريبة. السباحة ضد التيار ، استغرقت منه 8 دقائق للسباحة 200 متر. استغرق السباحة مرة أخرى مع التيار نصف فترة طويلة. ما هو متوسط سرعة الحالية له وبحيرة؟
سرعة كيفن 37.5 متر في الدقيقة. تبلغ سرعة البحيرة الحالية 12.5 متر في الدقيقة. لديك اثنين من المعادلات واثنين من المجهولين. اسمحوا لي أن أسند k إلى سرعة Kevin و c مثل سرعة التيار. k-c = 25 لأنه يستغرق 8 دقائق للسباحة 200 متر ضد التيار (200/8 = 25 متر في الدقيقة). k + c = 50 لأنه يستغرق 4 دقائق للسباحة 200 متر عندما يسبح على نفس اتجاه التيار (200/4 = 50 متر في الدقيقة). عند إضافة هاتين المعادلتين: k-c + k + c = 25 + 50 2timesk = 75 و k = 37.5 متر في الدقيقة. ضع هذه القيمة في أي معادلة مقدمة من abobe k-c = 25 37.5-c = 25 37.5 - 25 = c = 12.5 متر في الدقيقة. سرعة كيفن (في الماء) 37.5 متر في الدقيقة والسرعة الحالية هي 12.5 متر