إجابة:
استخدام قاعدة السلسلة مرتين وعند استخدام المشتق الثاني لقاعدة الاقتباس.
مشتق الأول
المشتق الثاني
تفسير:
مشتق الأول
على الرغم من أن هذا مقبول ، ولتسهيل المشتق الثاني ، يمكن استخدام الهوية المثلثية:
وبالتالي:
المشتق الثاني
الرقم الثالث هو مجموع الرقم الأول والثاني. الرقم الأول واحد أكثر من الرقم الثالث. كيف يمكنك العثور على 3 أرقام؟
هذه الشروط غير كافية لتحديد حل واحد. a = "ما تريد" b = -1 c = a - 1 دعنا ندعو الأرقام الثلاثة a، b و c. يتم إعطاء: c = a + ba = c + 1 باستخدام المعادلة الأولى ، يمكننا استبدال a + b لـ c في المعادلة الثانية كما يلي: a = c + 1 = (a + b) + 1 = a + b + 1 ثم قم بطرح a من الطرفين للحصول على: 0 = b + 1 طرح 1 من الطرفين للحصول على: -1 = b أي: b = -1 تصبح المعادلة الأولى الآن: c = a + (-1) = أ - 1 أضف 1 إلى الطرفين للحصول على: c + 1 = a هذا هو نفس المعادلة الثانية. لا توجد قيود كافية لتحديد a و c بشكل فريد. يمكنك اختيار أي قيمة تريدها لـ a ودع c = a - 1.
المصطلحان الأول والثاني للتسلسل الهندسي هما على التوالي المصطلحين الأول والثالث للتسلسل الخطي. المصطلح الرابع للتسلسل الخطي هو 10 ومجموع المصطلح الأول خمسة هو 60 أوجد المصطلحات الخمسة الأولى للتسلسل الخطي؟
{16 ، 14 ، 12 ، 10 ، 8} يمكن تمثيل تسلسل هندسي نموذجي كـ c_0a و c_0a ^ 2 و cdots و c_0a ^ k وتسلسل حسابي نموذجي مثل c_0a و c_0a + Delta و c_0a + 2Delta و cdots و c_0a + kDelta استدعاء c_0 a كعنصر أول للتسلسل الهندسي لدينا {(c_0 a ^ 2 = c_0a + 2Delta -> "الأول والثاني من GS هما الأول والثالث من LS") ، (c_0a + 3Delta = 10- > "المصطلح الرابع للتسلسل الخطي هو 10") ، (5c_0a + 10Delta = 60 -> "مجموع فترته الخمسة الأولى هو 60"):} حل c_0 ، a ، Delta نحصل عليه c_0 = 64/3 ، a = 3/4 ، Delta = -2 ، والعناصر الخمسة الأولى للتسلسل الحسابي هي {16 ، 14 ، 12 ، 10 ، 8}
مجموع الرقم الأول والثاني هو 42. الفرق بين الرقم الأول والثاني هو 24. ما الرقمان؟
أكبر = 33 أصغر = 9 اسمحوا x أن يكون العدد أكبر ، يجب أن تكون y الرقم الأقل x + y = 42 x-y = 24 أضف المعادلتين معا : 2x + y-y = 24 + 42 2x = 66 x = 33 y = 9