إجابة:
تفسير:
أعد كتابة sin ^ 4 (x) tan ^ 2 (x) من حيث القوة الأولى لجيب التمام؟
=> (1-3cos ^ 2 (x) + 3cos ^ 4 (x) -cos ^ 6 (x)) / cos ^ 2 (x) sin ^ 4 (x) tan ^ 2 (x) => (1- cos ^ 2 (x)) ^ 2 (sin ^ 2 (x)) / cos ^ 2 (x) => (1-2cos ^ 2 (x) + cos ^ 4 (x)) (sin ^ 2 (x) ) / cos ^ 2 (x) => (sin ^ 2 (x) -2sin ^ 2 (x) cos ^ 2 (x) + sin ^ 2 (x) cos ^ 4 (x)) / cos ^ 2 (x ) => ((1-cos ^ 2 (x)) -2 (1-cos ^ 2 (x)) cos ^ 2 (x) + (1-cos ^ 2 (x)) cos ^ 4 (x)) / cos ^ 2 (x) => (1-cos ^ 2 (x) -2cos ^ 2 (x) + 2cos ^ 4 (x) + cos ^ 4 (x) -cos ^ 6 (x)) / cos ^ 2 (x) => (1-3cos ^ 2 (x) + 3cos ^ 4 (x) -cos ^ 6 (x)) / cos ^ 2 (x)
كيف يمكنك استخدام صيغ تقليل القدرة لإعادة كتابة تعبير sin ^ 8x من حيث القوة الأولى لجيب التمام؟
Sin ^ 8x = 1/128 [35-56cos2x + 28cos4x-8cos6x + cos8x] rarrsin ^ 8x = [(2sin ^ 2x) / 2] ^ 4 = 1/16 [{1-cos2x} ^ 2] ^ 2 = 1 / 16 [1-2cos2x + cos ^ 2 (2x)] ^ 2 = 1/16 [(1-2cos2x) ^ 2 + 2 * (1-2cos2x) * cos ^ 2 (2x) + (cos ^ 2 (2x )) ^ 2] = 1/16 [1-4cos2x + 4cos ^ 2 (2x) + 2cos ^ 2 (2x) -4cos ^ 3 (2x) + ((2cos ^ 2 (2x)) / 2) ^ 2] = 1/16 [1-4cos2x + 6cos ^ 2 (2x) - (3cos (2x) + cos6x) + ((1 + cos4x) / 2) ^ 2] = 1/16 [1-4cos2x + 3 * {1 + cos4x} - (3cos (2x) + cos6x) + ((1 + 2cos4x + cos ^ 2 (4x)) / 4)] = 1/16 [1-4cos2x + 3 + 3cos4x-3cos (2x) -cos6x + ( (2 + 4cos4x + 2cos ^ 2 (4x)) / 8)] = 1/16 [4-7cos2x + 3cos4x-cos6x + ((2 + 4
كيف يمكنك التعبير عن كوس ثيتا - كوس ^ 2 ثيتا + ثانية ثيتا من حيث الخطيئة ثيتا؟
Sqrt (1-sin ^ 2 theta) - (1-sin ^ 2 theta) + 1 / sqrt (1-sin ^ 2 theta) فقط قم بتبسيطها إذا كنت بحاجة إلى ذلك. من البيانات المعطاة: كيف يمكنك التعبير عن cos theta cos ^ 2 theta + sec theta من حيث sin theta؟ الحل: من الهويات المثلثية الأساسية Sin ^ 2 theta + Cos ^ 2 theta = 1 يتبع cos theta = sqrt (1-sin ^ 2 theta) cos ^ 2 theta = 1-sin ^ 2 theta أيض ا sec theta = 1 / cos theta وبالتالي cos theta cos ^ 2 theta + sec theta sqrt (1-sin ^ 2 theta) - (1-sin ^ 2 theta) + 1 / sqrt (1-sin ^ 2 theta) بارك الله فيك ... وآمل أن يكون التفسير مفيد.