إجابة:
تفسير:
# 3 + i = sqrt (10) (cos (alpha) + i sin (alpha)) # أين#alpha = أركان (1/3) #
وبالتالي
#root (3) (3 + i) = الجذر (3) (sqrt (10)) (cos (alpha / 3) + i sin (alpha / 3)) #
# = root (6) (10) (cos (1/3 arctan (1/3)) + i sin (1/3 arctan (1/3))) #
# = root (6) (10) cos (1/3 arctan (1/3)) + root (6) (10) sin (1/3 arctan (1/3)) i #
منذ
جذران مكعبان آخران
#omega (root (6) (10) cos (1/3 arctan (1/3)) + root (6) (10) sin (1/3 arctan (1/3)) i) #
# = root (6) (10) cos (1/3 arctan (1/3) + (2pi) / 3) + root (6) (10) sin (1/3 arctan (1/3) + (2pi) / 3) أنا #
# omega ^ 2 (root (6) (10) cos (1/3 arctan (1/3)) + root (6) (10) sin (1/3 arctan (1/3)) i) #
# = root (6) (10) cos (1/3 arctan (1/3) + (4pi) / 3) + root (6) (10) sin (1/3 arctan (1/3) + (4pi) / 3) أنا #