لحساب العائد المئوية ، يمكنك تقسيم العائد الفعلي على العائد النظري واضربه في 100.
مثال
ما هو العائد المئوي إذا تم تشكيل 0.650 جم من النحاس عندما يتفاعل الألمنيوم الزائد مع 2.00 غرام من كلوريد النحاس (II) ثنائي الهيدرات وفق ا للمعادلة
3CuCl • 2H O + 2Al 3Cu + 2AlCl + 2H O
حل
أولا ، قم بحساب العائد النظري للنحاس.
2.00 جم CuCl • 2H O ×
0.745 جم مكعب
الآن حساب العائد في المئة.
٪ العائد = (العائد الفعلي) / (العائد النظري) × 100٪ =
السؤال رقم 53a2b + مثال
هذا التعريف للمسافة ثابت تحت تغيير الإطار بالقصور الذاتي ، وبالتالي له معنى مادي. يتم إنشاء مساحة Minkowski لتكون مساحة ذات 4 أبعاد مع إحداثيات المعلمات (x_0 ، x_1 ، x_2 ، x_3 ، x_4) ، حيث نقول عادة x_0 = ct. في صميم النسبية الخاصة ، لدينا تحولات لورنتز ، والتي هي تحويلات من إطار بالقصور الذاتي إلى آخر والتي تترك سرعة الضوء ثابتة. لن أخوض في الاشتقاق الكامل لتحولات لورنتز ، إذا كنت تريد مني أن أشرح ذلك ، فقط أسأل وسأذهب إلى مزيد من التفاصيل. المهم هو ما يلي. عندما ننظر إلى المساحة الإقليدية (المساحة التي لدينا فيها التعريف العادي للطول الذي اعتدنا على ds ^ 2 = dx_1 ^ 2 + dx_2 ^ 2 + dx_3 ^ 2) ، لدينا تحويلات معينة ؛ التناوب
السؤال رقم 64730 + مثال
97 "حسن ا ، شيء يتم تحديده بواسطة أرقام d ، له" "ب عد d." "Pn هي مجموعة متعددة الحدود من الدرجة n." "Pn حاصل على الدرجة n + 1 كعدد متعد د من الدرجة n له معاملات n + 1". بالنسبة إلى n = 2 (المعادلات التربيعية) ، لدينا 3 "" معاملات ، مثال معين. " "V100 هي مجموعة من p P100 ، لذلك كل متعددو الحدود من الدرجة" 100 "، قابلة للقسمة على" x ^ 4 + 1 "." "إذا احتاجوا إلى القسمة على" x ^ 4 + 1 "، فإننا ببساطة نذكر أن" "p =" (x ^ 4 + 1) q "، مع q P96 ، بحيث يكون كثير الحدود" " الآن يتم تحديده فقط من خلال معا
السؤال رقم 65ee0 + مثال
أنا أظن أنك تعني شيئ ا مثل root3x؟ هذا هو الجذر مكعب. وهذا يعني أن الجذر الذي تضربه بنفسه 3 مرات للحصول على القيمة الأصلية. مثال root (3) 8 = 2 لأن 222 = 8 الجذر التربيعي هو الأكثر شيوع ا ، لكن يمكنك الحصول على الجذر n. مثال آخر: الجذر (4) 625 = 5 لأن 555 * 5 = 625