المثلث A له جوانب بأطوال 18 و 3 3 و 21. يشبه المثلث B المثلث A وله جانب طوله 14. ما هي أطوال ممكن من الجانبين الآخرين للمثلث B؟

المثلث A له جوانب بأطوال 18 و 3 3 و 21. يشبه المثلث B المثلث A وله جانب طوله 14. ما هي أطوال ممكن من الجانبين الآخرين للمثلث B؟
Anonim

إجابة:

#77/3 & 49/3#

تفسير:

عندما يتشابه مثلثان ، تكون نسب أطوال الأضلاع المقابلة لها متساوية.

وبالتالي،

# "طول الجانب للمثلث الأول" / "طول الجانب للمثلث الثاني" = 18/14 = 33 / س = 21 / ذ #

أطوال ممكن من الجانبين الآخرين هي:

#x = 33 × 14/18 = 77/3 #

#y = 21 × 14/18 = 49/3 #

إجابة:

طول ممكن من الجانبين الآخرين من المثلث B هي

# (25.67,16.33), (7.64,8.91), (12,22)# وحدات

تفسير:

الجانبين مثلث # 18,33, 21#

على افتراض الجانب # ل= 14 # مثلث B يشبه الجانب #18# من

مثلث #ا:. 18/14 = 33 / ب:. ب = (33 * 14) / 18 = 25 2/3 ~~ 25.67 # و

# 18/14 = 21 / ج:. ج == (21 * 14) / 18 = 16 1/3 ~~ 16.33 #

طول ممكن من الجانبين الآخرين من المثلث B هي

#25.67,16.33# وحدات

على افتراض الجانب # ب = 14 # مثلث B يشبه الجانب #33# من

مثلث #ا:. 33/14 = 18 / أ:. a = (18 * 14) / 33 = 7 7/11 ~~ 7.64 # و

# 33/14 = 21 / ج:. ج == (21 * 14) / 33 = 8 10/11 ~~ 8.91 #

طول ممكن من الجانبين الآخرين من المثلث B هي

#7.64, 8.91#وحدات

على افتراض الجانب # ج = 14 # مثلث B يشبه الجانب #21# من

مثلث #ا:. 21/14 = 18 / أ:. و= (18 * 14) / 21 = 12 # و

# 21/14 = 33 / ب:. ب = (33 * 14) / 21 = 22 #

طول ممكن من الجانبين الآخرين من المثلث B هي

#12, 22# وحدة. لذلك ، طول ممكن من الجانبين الآخرين

من المثلث B هي # (25.67,16.33), (7.64,8.91), (12,22)#وحدات