ما هو تمييز 9x ^ 2-6x + 1 = 0 وماذا يعني ذلك؟

ما هو تمييز 9x ^ 2-6x + 1 = 0 وماذا يعني ذلك؟
Anonim

إجابة:

لهذا التربيعي ، # دلتا = 0 #مما يعني أن المعادلة لها واحد الجذر الحقيقي (جذر متكرر).

تفسير:

الشكل العام للمعادلة التربيعية يشبه هذا

# ax ^ 2 + bx + c = 0 #

ال التمايز من معادلة من الدرجة الثانية كما هو محدد

#Delta = b ^ 2 - 4 * a * c #

في حالتك ، تبدو المعادلة هكذا

# 9x ^ 2 - 6x + 1 = 0 #, مما يعني أن لديك

# {(a = 9) ، (b = -6) ، (c = 1):} #

وبالتالي فإن التمييز يكون مساويا ل

#Delta = (-6) ^ 2 - 4 * 9 * 1 #

# دلتا = 36 - 36 = اللون (أخضر) (0) #

عندما يكون التمييز على قدم المساواة صفر، سيكون من الدرجة الثانية فقط واحد حل حقيقي متميز ، مستمد من الشكل العام

#x_ (1،2) = (-b + - sqrt (Delta)) / (2a) = (-6 + - sqrt (0)) / (2a) = اللون (الأزرق) (- b / (2a)) #

في حالتك ، تحتوي المعادلة على واحدة خامد الحل الحقيقي يساوي

# x_1 = x_2 = - ((- 6)) / (2 * 9) = 6/18 = 1/3 #