إجابة:
تفسير:
نحن نعرف ذلك
لأنه إذا كانت زاوية مثلث متساوي الأضلاع
وبالتالي
يتم زيادة طول كل جانب من مثلث متساوي الأضلاع بنسبة 5 بوصات ، لذلك ، المحيط الآن 60 بوصة. كيف تكتب وتحل المعادلة لإيجاد الطول الأصلي لكل جانب من المثلث متساوي الأضلاع؟
لقد وجدت: 15 "في" دعنا نسمي الأطوال الأصلية x: زيادة 5 "في" ستمنحنا: (س + 5) + (س + 5) + (س + 5) = 60 3 (س + 5) = 60 إعادة ترتيب: x + 5 = 60/3 x + 5 = 20 x = 20-5 x = 15 "في"
يبلغ نصف قطر الدائرة الأكبر ضعف طول دائرة نصف قطرها. مساحة الدونت 75 بي. العثور على دائرة نصف قطرها أصغر (الداخلية) الدائرة.؟
أصغر دائرة نصف قطرها 5 اسمحوا r = نصف قطر الدائرة الداخلية. ثم نصف قطر الدائرة الأكبر هو 2r من المرجع نحصل على المعادلة الخاصة بمساحة الحلقة: A = pi (R ^ 2-r ^ 2) البديل 2r لـ R: A = pi ((2r) ^ 2- r ^ 2) تبسيط: A = pi ((4r ^ 2- r ^ 2) A = 3pir ^ 2 البديل في المنطقة المحددة: 75pi = 3pir ^ 2 قس م كلا الجانبين على 3pi: 25 = r ^ 2 r = 5
النظر في 3 دوائر متساوية من دائرة نصف قطرها ص داخل دائرة معينة من دائرة نصف قطرها R لمس كل منهما الآخر ودائرة معينة كما هو مبين في الشكل ، ثم مساحة المنطقة المظللة تساوي؟
يمكننا تكوين تعبير لمنطقة المنطقة المظللة مثل: A_ "shaded" = piR ^ 2 - 3 (pir ^ 2) -A_ "center" حيث A_ "center" هي منطقة المقطع الصغير بين الثلاثة دوائر أصغر. للعثور على مساحة هذا ، يمكننا رسم مثلث من خلال ربط مراكز الدوائر البيضاء الثلاث الأصغر. ونظر ا لأن كل دائرة لها دائرة نصف قطرها r ، فإن طول كل جانب من المثلث هو 2r والمثلث متساوي الأضلاع لذا يكون لزوايا 60 ^ o لكل منهما. يمكننا إذن القول أن زاوية المنطقة الوسطى هي مساحة هذا المثلث مطروح ا منها القطاعات الثلاثة للدائرة. ارتفاع المثلث هو ببساطة sqrt ((2r) ^ 2-r ^ 2) = sqrt (3) r ^ ، وبالتالي فإن مساحة المثلث 1/2 * base * height = 1/2 * 2r