إجابة:
16
تفسير:
طريقة 1.
الطريقة 2.
يمكنك الإجابة عن طريق اللغة.
50 ٪ يعني النصف.
حتى نصف 32 هو 16.
وبالمثل 100 ٪ يعني مضاعفة.
200 ٪ بنفس الطريقة.
هذا يعمل فقط لهذه النسب المئوية.
إجابة:
تفسير:
يستعاض عن كلمة "من" بعلامة مضاعفة:
وبالتالي
عرض ملعب مستطيل هو 2x-5 أقدام ، والطول هو 3x + 9 أقدام. كيف يمكنك كتابة P (متعدد الحدود) (x) الذي يمثل المحيط ومن ثم تقييم هذا المحيط ومن ثم تقييم هذا المحيط متعدد الحدود إذا كان x هو 4 أقدام؟
محيط هو ضعف مجموع العرض والطول. P (x) = 2 ((2x-5) + (3x + 9)) = 2 (5x + 4) = 10x + 8 P (4) = 10 (4) + 8 = 48 تحقق. س = 4 يعني عرض 2 (4) -5 = 3 وطول 3 (4) + 9 = 21 لذلك محيط 2 (3 + 21) = 48. رباعية sqrt
كيف يمكنني إعادة كتابة تعبيرات حساب المثلثات التالية مع الأس لا يزيد عن 1؟ مثل (A) (Sin ^ 3) x (B) (cos ^ 4) x؟
Sin3x = 1/4 [3sinx-sin3x] و cos ^ 4 (x) = 1/8 [3 + 4cos2x + cos4x] rarrsin3x = 3sinx-4sin ^ 3x rarr4sin ^ 3x = 3sinx-sin3x rarrsin ^ 3x = 1/4 [ 3sinx-sin3x] أيض ا ، cos ^ 4 (x) = [(2cos ^ 2x) / 2] ^ 2 = 1/4 [1 + cos2x] ^ 2 = 1/4 [1 + 2cos2x + cos ^ 2 (2x) ] = 1/8 [2 + 4cos2x + 2cos ^ 2 (2x)] = 1/8 [2 + 4cos2x + 1 + cos4x] = 1/8 [3 + 4cos2x + cos4x]
يمكنك ركوب الدراجة الخاصة بك إلى الحرم الجامعي على بعد 8 أميال والعودة إلى المنزل على نفس الطريق. عند الذهاب إلى الحرم الجامعي ، يمكنك الركوب في الغالب إلى حد كبير ومتوسط 5 أميال في الساعة أسرع من رحلة العودة إلى المنزل. استمرار في التفاصيل؟
X = 5/3 OR x = 10 نحن نعلم أن RatetimesTime = المسافة لذلك ، الوقت = DistancedivideRate يمكننا أيض ا إنشاء معادلتين للحل بالنسبة إلى المعدل: واحدة للحرم الجامعي وواحدة للعودة إلى الوطن.لإيجاد متوسط معدلات السماح x = متوسط معدل في رحلة العودة. إذا حددنا x على النحو الوارد أعلاه ، فإننا نعلم أن x-5 يجب أن يكون متوسط معدلك في الطريق إلى الحرم الجامعي (العودة إلى المنزل أسرع من 5mph) لإنشاء معادلة نعلم أن كلتا الرحلتين كانت 8 أميال. لذلك ، يمكن تحديد DistancedivideRate. 8 / x + 8 / (x-5) = 12/5 في المعادلة أعلاه ، أضفت الوقت (DistancedivideRate) لكلتا الرحلتين إلى نفس الوقت الكلي المعطى. لحل المعادلة ضرب المعادلة بأكملها من