إذا نحن اسماء الاطراف الثلاثة
باستخدام خاصية النسب (التي يتم استخدامها قبل المجمع ومن عكس المصطلحات):
أو:
أو:
طول الساق من المثلث الأيمن 3 بوصات أكثر من 3 أضعاف طول الساق الأقصر. مساحة المثلث 84 بوصة مربعة. كيف يمكنك العثور على محيط المثلث الصحيح؟
P = 56 بوصة مربعة. انظر الشكل أدناه لفهم أفضل. c = 3b + 3 (bc) / 2 = 84 (b. (3b + 3)) / 2 = 84 3b ^ 2 + 3b = 84xx2 3b ^ 2 + 3b-168 = 0 حل المعادلة التربيعية: b_1 = 7 b_2 = -8 (مستحيل) لذا ، b = 7 c = 3xx7 + 3 = 24 a ^ 2 = 7 ^ 2 + 24 ^ 2 a ^ 2 = 625 a = sqrt (625) = 25 P = 7 + 24 + 25 = 56 بوصة مربعة
محيط المثلث 24 بوصة. أطول جانب من 4 بوصات أطول من أقصر جانب ، وأقصر جانب هو ثلاثة أرباع طول الجانب الأوسط. كيف يمكنك العثور على طول كل جانب من المثلث؟
حسن ا ، هذه المشكلة ببساطة مستحيلة. إذا كان أطول جانب هو 4 بوصات ، فلا يمكن أن يكون محيط المثلث 24 بوصة. أنت تقول أن 4 + (شيء أقل من 4) + (شيء أقل من 4) = 24 ، وهو أمر مستحيل.
محيط المثلث 29 ملم. طول الجانب الأول هو ضعف طول الجانب الثاني. طول الجانب الثالث هو 5 أكثر من طول الجانب الثاني. كيف يمكنك العثور على الأطوال الجانبية للمثلث؟
S_1 = 12 s_2 = 6 s_3 = 11 محيط المثلث هو مجموع أطوال جميع جوانبه. في هذه الحالة ، يتم إعطاء محيط 29 مم. لذلك في هذه الحالة: s_1 + s_2 + s_3 = 29 لذلك نقوم بحل لطول الجوانب ، نقوم بترجمة البيانات في المعطى إلى نموذج المعادلة. "طول الجانب الأول هو ضعف طول الجانب الثاني" ، ولحل هذه المشكلة ، نخصص متغير ا عشوائي ا إما s_1 أو s_2. على سبيل المثال ، أود أن أكون x طول الجانب الثاني لتجنب وجود كسور في معادلي. لذلك نحن نعرف أن: s_1 = 2s_2 ولكن بما أننا سمحنا s_2 أن يكون x ، فإننا نعرف الآن: s_1 = 2x s_2 = x "طول الجانب الثالث هو 5 أكثر من طول الجانب الثاني." ترجمة العبارة أعلاه إلى نموذج المعادلة ... s_3 = s_2 +