إجابة:
أولا تجد م.
تفسير:
سوف تكون المعاملات الثلاثة الأولى دائم ا
مجموع هذه يبسط ل
الحل الايجابي الوحيد هو
الآن ، في التوسع مع m = 9 ، يجب أن يكون المصطلح "x" هو المصطلح الذي يحتوي على
هذا المصطلح لديه معامل
الحل هو 84.
المصطلحان الأول والثاني للتسلسل الهندسي هما على التوالي المصطلحين الأول والثالث للتسلسل الخطي. المصطلح الرابع للتسلسل الخطي هو 10 ومجموع المصطلح الأول خمسة هو 60 أوجد المصطلحات الخمسة الأولى للتسلسل الخطي؟
{16 ، 14 ، 12 ، 10 ، 8} يمكن تمثيل تسلسل هندسي نموذجي كـ c_0a و c_0a ^ 2 و cdots و c_0a ^ k وتسلسل حسابي نموذجي مثل c_0a و c_0a + Delta و c_0a + 2Delta و cdots و c_0a + kDelta استدعاء c_0 a كعنصر أول للتسلسل الهندسي لدينا {(c_0 a ^ 2 = c_0a + 2Delta -> "الأول والثاني من GS هما الأول والثالث من LS") ، (c_0a + 3Delta = 10- > "المصطلح الرابع للتسلسل الخطي هو 10") ، (5c_0a + 10Delta = 60 -> "مجموع فترته الخمسة الأولى هو 60"):} حل c_0 ، a ، Delta نحصل عليه c_0 = 64/3 ، a = 3/4 ، Delta = -2 ، والعناصر الخمسة الأولى للتسلسل الحسابي هي {16 ، 14 ، 12 ، 10 ، 8}
مجموع المصطلحات الأربعة الأولى من GP هو 30 والمعدلات الأربعة الأخيرة هي 960. إذا كان المصطلح الأول والأخير من GP هو 2 و 512 على التوالي ، ابحث عن النسبة الشائعة.؟
2root (3) (2). افترض أن النسبة الشائعة (cr) للطبيب المعني هي r و n ^ (th) المصطلح هو المصطلح الأخير. بالنظر إلى ذلك ، فإن المصطلح الأول من GP هو 2.:. "GP هو" {2،2 ، 2r ^ 2 ، 2 ، 3 ، .. ، 2r ^ (n-4) ، 2r ^ (n-3) ، 2R ^ (ن 2)، 2R ^ (ن 1)}. معطى ، 2 + 2r + 2r ^ 2 + 2r ^ 3 = 30 ... (نجمة ^ 1) ، و 2r ^ (n-4) + 2r ^ (n-3) + 2r ^ (n-2) + 2R ^ (ن +1) = 960 (نجمة ^ 2). ونحن نعلم أيضا أن المصطلح الأخير هو 512.:. ص ^ (ن +1) = 512 .................... (نجمة ^ 3). الآن ، (نجمة ^ 2) rArr r ^ (n-4) (2 + 2r + 2r ^ 2 + 2r ^ 3) = 960 ، أي ، (r ^ (n-1)) / r ^ 3 (2 + 2r + 2R ^ 2 + 2R ^ 3) = 960. :. (512) / r ^ 3 (30) = 960 ...... [ل
مجموع ثلاثة أرقام هو 4. إذا تم مضاعفة الرقم الأول والثالث ثلاثة أضعاف ، يكون المجموع أقل من الثاني. أربعة أكثر من الأول يضاف إلى الثالث هو اثنين أكثر من الثاني. العثور على الأرقام؟
1 = 2 ، 2 = 3 ، 3 = -1 ، أنشئ المعادلات الثلاث: Let 1st = x ، 2nd = y و 3 = z. EQ. 1: x + y + z = 4 EQ. 2: 2x + 3z + 2 = y "" => 2x - y + 3z = -2 EQ. 3: x + 4 + z -2 = y "" => x - y + z = -2 احذف المتغير y: EQ1. + EQ. 2: 3x + 4z = 2 EQ. 1 + مكافئ 3: 2x + 2z = 2 حل من أجل x عن طريق القضاء على المتغير z بضرب EQ. 1 + مكافئ 3 من -2 وإضافة إلى EQ. 1 + مكافئ 2: (-2) (EQ. 1 + EQ. 3): -4x - 4z = -4 "" 3x + 4z = 2 ul (-4x - 4z = -4) -x "" = -2 "" = > x = 2 حل من أجل z بوضع x في EQ. 2 و مكافئ. 3: مكافئ. 2 مع x: "" 4 - y + 3z = -2 "" => -y + 3z = -6 EQ.