إجابة:
تفسير:
من السؤال المفصل التقطت الكلمة تركيبات
ما الذي يجب أن أعتقد أنه تم الحصول على السؤال من الموضوع ؛ التقليب والجمع..
اتبع هذه الخطوات البسيطة..
لديك 20 رابطات عنق ، من بين 3 روابط هل يمكن أن تختار..
وغني عن هذه الصيغة من الجمع.
أين
امل هذا واضح ؟؟
إجابة:
هناك
تفسير:
سيكون هنالك:
هذا يعطي
ولكن داخل هذه المجموعات نفسها سوف تتكرر.
على سبيل المثال ، الأحمر والأزرق والأخضر والأحمر والأخضر والأزرق والأزرق والأحمر والأخضر كلها مزيج من الألوان.
هناك
وبالتالي فإن العدد الإجمالي للمجموعات الممكنة هو
يريد صاحب متجر ستريو الإعلان عن وجود العديد من أنظمة الصوت المختلفة في المخزون. يحتوي المتجر على 7 مشغلات أقراص مضغوطة مختلفة و 8 أجهزة استقبال مختلفة و 10 سماعات مختلفة. كم عدد أنظمة الصوت المختلفة التي يمكن للمالك الإعلان عنها؟
يمكن للمالك الإعلان عن ما مجموعه 560 من أنظمة الصوت المختلفة! طريقة التفكير في ذلك هي أن كل مجموعة تبدو كما يلي: مكبر صوت واحد (نظام) ، مستقبل واحد ، مشغل أقراص مضغوطة واحد إذا كان لدينا خيار واحد فقط للمتحدثين ومشغلات الأقراص المضغوطة ، لكن لا يزال لدينا 8 أجهزة استقبال مختلفة ، سيكون هناك 8 مجموعات. إذا قمنا بإصلاح السماعات (يتظاهر بوجود نظام مكبر صوت واحد فقط) ، فيمكننا العمل من هناك: S ، R_1 ، C_1 S ، R_1 ، C_2 S ، R_1 ، C_3 ... S ، R_1 ، C_8 S ، R_2 ، C_1 ... S ، R_7 ، C_8 لن أكتب كل مجموعة ، ولكن النقطة المهمة هي أنه حتى لو كان عدد السماعات ثابت ا ، فسيكون هناك: N_ "Receiver" xxN_ "CD Player" 7xx8
لديك ثماني دعاوى مختلفة للاختيار من بينها للقيام برحلة. كم عدد مجموعات من ثلاث دعاوى يمكن أن تأخذ؟
C_ (8،3) = (8!) / ((3!) (8-3)!) = (8!) / (3! 5!) = (8xx7xx6xx5!) / (3xx2xx5!) = 56 يمكننا استخدم الصيغة العامة للمجموعات: C_ (n، k) = (n!) / ((k!) (nk)!) مع n = "السكان" ، k = "اللقطات" وهكذا C_ (8،3) = ( 8!) / ((3!) (8-3)!) = (8!) / (3! 5!) = (8xx7xx6xx5!) / (3xx2xx5!) = 56
بطاقة الائتمان الخاصة بك 18 ٪ الفائدة المركبة سنويا. لديك 500 دولار على بطاقة الائتمان الخاصة بك. بعد 5 سنوات كم لديك مدين إجمالي؟
A = $ 1143.90 صيغة الفائدة المركبة - A = P (1 + r / n) ^ nY حيث A = المبلغ المستحق P = المبلغ الرئيسي (المبلغ الأصلي ، 500 دولار) R = السعر ، العشري (0.18) N = المركبات في السنة ، في هذا سيناريو ، 1 Y = عدد السنوات ، 5