إجابة:
معادلة Parabola هي
تفسير:
Parabola هو موضع النقطة التي تتحرك بحيث تكون المسافة من التركيز calld نقطة معينة وخط معين ccalled ثابت دائما.
دع النقطة تكون
وبالتالي equaion من القطع المكافئ هو
أو
أو
أي
أو
أو
وبالتالي معادلة المكافئ هو
الرسم البياني {(1/16 (س 7) ^ 2 + 1 ذ) ((س 7) ^ 2 + (ص 1) ^ 2 حتي 0،15) ((س 7) ^ 2 + (ص 5) ^ 2-0.15) (ص + 3) = 0 -12.08 ، 27.92 ، -7.36 ، 12.64}
ما هي معادلة القطع المكافئ مع التركيز على (0،0) ومصفوفة y = 3؟
X ^ 2 = -6y + 9 Parabola هو موضع نقطة ، والتي تتحرك بحيث تكون مسافتها ، من خط يسمى directrix ونقطة تسمى التركيز ، متساوية دائم ا. دع النقطة هي (x، y) والمسافة من (0،0) هي sqrt (x ^ 2 + y ^ 2) ومسافة المسافة من directrix y = 3 هي | y-3 | وبالتالي معادلة القطع المكافئ هي sqrt (x ^ 2 + y ^ 2) = | y-3 | والتربيع x ^ 2 + y ^ 2 = y ^ 2-6y + 9 أو x ^ 2 = -6y + 9 graph {(x ^ 2 + 6y-9) (y-3) (x ^ 2 + y ^ 2 -0.03) = 0 [-10 ، 10 ، -5 ، 5]}
ما هي معادلة القطع المكافئ مع التركيز على (0،0) ومصفوفة y = -6؟
المعادلة هي x ^ 2 = 12 (y + 3) أي نقطة (x، y) على القطع المكافئ تكون متساوية من البؤرة والمصفوفة ولذلك ، sqrt ((x-0) ^ 2 + (y-0) ^ 2 ) = y - (- 6) sqrt (x ^ 2 + y ^ 2) = y + 6 x ^ 2 + y ^ 2 = (y + 6) ^ 2 x ^ 2 + y ^ 2 = y ^ 2 + 12y +36 x ^ 2 = 12y + 36 = 12 (y + 3) رسم بياني {(x ^ 2-12 (y + 3)) (y + 6) ((x ^ 2) + (y ^ 2) -0.03) = 0 [-20.27 ، 20.27 ، -10.14 ، 10.14]}
ما هي معادلة القطع المكافئ مع التركيز على (10،19) ومصفوفة y = 15؟
(x-10) ^ 2 = 8 (y-17)> "من أي نقطة" (x ، y) "على المكافئ" "المسافة إلى التركيز والمصفوفة من هذه النقطة" "متساوية" (أزرق ) "باستخدام صيغة المسافة" sqrt ((x-10) ^ 2 + (y-19) ^ 2) = | y-15 | اللون (الأزرق) "تربيع كلا الجانبين" (x-10) ^ 2 + (y-19) ^ 2 = (y-15) ^ 2 rArr (x-10) ^ 2 إلغاء (+ y ^ 2) -38y + 361 = إلغاء (y ^ 2) -30y + 225 rArr (x-10) ^ 2 = 8y-136 rArr (x-10) ^ 2 = 8 (y-17) larrcolor (blue) "is the equation"