إجابة:
تفسير:
لا يمكن أن يساوي المقام صفر ، لأن هذا سيجعل y غير معر ف. معادلة المقام بصفر والحل تعطي القيمة التي لا يمكن أن تكون x.
# "حل" x-10 = 0rArrx = 10larrcolor (أحمر) "قيمة مستبعدة" #
#rArr "المجال هو" x inRR ، x! = 10 # للعثور على أي قيمة مستبعدة في النطاق ، أعد ترتيب الوظيفة التي تجعل x الموضوع.
#rArry (x-10) = 1larr "الضرب المتقاطع" #
# rArrxy-10y = 1larr "التوزيع" #
# rArrxy = 1 + 10Y #
# rArrx = (1 + 10Y) / ص #
# "القاسم"! = 0 #
# rArry = 0larrcolor (أحمر) "القيمة المستبعدة" #
#rArr "النطاق هو" y inRR ، y! = 0 #
ما هو مجال ومدى f (x) = x ^ 2-2x + 3؟
انظر الشرح. المجال مجال الوظيفة هو أكبر مجموعة فرعية من RR التي يتم تعريف صيغة الدالة الخاصة بها. الدالة المعطاة متعددة الحدود ، لذلك لا توجد حدود لقيم x. هذا يعني أن المجال هو D = RR Range. المدى هو الفاصل الزمني للقيم التي تأخذها الوظيفة. تأخذ الدالة التربيعية ذات معامل موجب x ^ 2 جميع القيم في فاصل زمني [q؛ + oo) حيث q هي المعامل y لرأس الوظيفة. p = (- b) / (2a) = 2/2 = 1 q = f (p) = 1 ^ 2-2 * 1 + 3 = 1-2 + 3 = 2 نطاق الوظيفة هو [2؛ + oo)
ما هو مجال ومدى F (x) = 5 / (x-2)؟
Text (المجال): x! = 2 text (Range): f (x)! = 0 المجال هو نطاق قيم x الذي يعطي f (x) قيمة فريدة ، فهناك قيمة ص واحدة فقط لكل x القيمة. هنا ، نظر ا لأن x في الجزء السفلي من الكسر ، لا يمكن أن يكون لها أي قيمة بحيث يكون المقام بأكمله يساوي الصفر ، أي d (x)! = 0 d (x) = نص (مقام الكسر الذي هو دالة لـ ) س. x-2! = 0 x! = 2 الآن ، النطاق هو مجموعة قيم y المعطاة عند تعريف f (x). للعثور على أي قيم y لا يمكن الوصول إليها ، أي الثقوب ، أو الخطوط المقاربة ، إلخ. نعيد ترتيب لجعل x الموضوع. y = 5 / (x-2) x = 5 / y + 2 ، y! = 0 نظر ا لأن هذا سيكون غير معرف ، وبالتالي لا توجد قيم x حيث f (x) = 0. لذلك النطاق هو f (x)! = 0.
دع مجال f (x) هو [-2.3] والنطاق هو [0،6]. ما هو مجال ومدى f (-x)؟
المجال هو الفاصل الزمني [-3 ، 2]. النطاق هو الفاصل الزمني [0 ، 6]. بالضبط كما هي ، هذه ليست وظيفة ، لأن مجالها هو مجرد رقم -2.3 ، في حين أن نطاقه هو فاصل زمني. لكن بافتراض أن هذا مجرد خطأ مطبعي ، والنطاق الفعلي هو الفاصل الزمني [-2 ، 3] ، فهذا كالتالي: Let g (x) = f (-x). بما أن f تتطلب من المتغير المستقل أن يأخذ القيم فقط في الفاصل الزمني [-2 ، 3] ، يجب أن تكون -x (سالبة x) ضمن [-3 ، 2] ، وهو مجال g. بما أن g تحصل على قيمتها من خلال الدالة f ، فإن نطاقها يبقى كما هو ، بغض النظر عن ما نستخدمه كمتغير مستقل.