ما هو ميل المنحنى القطبي f (theta) = theta - sec ^ 3theta + thetasin ^ 3theta at theta = (5pi) / 8؟

ما هو ميل المنحنى القطبي f (theta) = theta - sec ^ 3theta + thetasin ^ 3theta at theta = (5pi) / 8؟
Anonim

إجابة:

# دى / DX = -0.54 #

تفسير:

لوظيفة القطبية # F (ثيتا) #, # دى / DX = (و "(ثيتا) sintheta + و (ثيتا) costheta) / (و" (ثيتا) costheta-و (ثيتا) sintheta) #

# F (ثيتا) = ثيتا ثوانى ^ 3theta + thetasin ^ 3theta #

# F '(ثيتا) = 1-3 (ثانية ^ 2theta) (د / DX sectheta) - الخطيئة ^ 3theta + 3thetasin ^ 2theta (د / DX sintheta) #

# F '(ثيتا) = 1-3sec ^ 3thetatantheta الخطيئة ^ 3theta + 3thetasin ^ 2thetacostheta #

# F '((5pi) / 3) = 1-3sec ^ 3 ((5pi) / 3) تان ((5pi) / 3) -sin ^ 3 ((5pi) / 3) +3 ((5pi) / 3) الخطيئة ^ 2 ((5pi) / 3) كوس ((5pi) / 3) ~~ -9.98 #

# F ((5pi) / 3) = ((5pi) / 3) -sec ^ 3 ((5pi) / 3) + ((5pi) / 3) الخطيئة ^ 3 ((5pi) / 3) ~~ -6.16 #

# دى / DX = (- 9.98sin ((5pi) / 3) -6.16cos ((5pi) / 3)) / (- 9.98cos ((5pi) / 3) + 6.16sin ((5pi) / 3)) = -0.54 #