إجابة:
تفسير:
إجابة:
تفسير:
افترض أن لديك
جاري الكتابة
-
# "" ^ 0 D_k = 1 # -
# "" ^ 1 D_k = k # -
# "" ^ n D_1 = 1 # -
# "" ^ n D_2 = "" ^ n D_1 + "" ^ (n-1) D_1 + … + "" ^ 0 D_1 = n + 1 # -
# "" ^ n D_3 = "" ^ n D_2 + "" ^ (n-1) D_2 + … + "" ^ 0 D_2 # # = (n + 1) + ((n-1) +1) + … + (1 + 1) + (0 + 1) = 1/2 (n + 1) (n + 2) # -
# "" ^ n D_4 = "" ^ n D_3 + "" ^ (n-1) D_3 + … + "" ^ 0 D_3 # # = 1/2 (n + 1) (n + 2) + 1/2 ((n-1) +1) ((n-1) +2) + … + 1/2 (0 + 1) (0 + 2) #
# = 1/6 (n + 1) (n + 2) (n + 3) #
# "" ^ n D_5 = "" ^ n D_4 + "" ^ (n-1) D_4 + … + "" ^ 0 D_4 # # = 1/6 (n + 1) (n + 2) (n + 3) +1/6 ((n-1) +1) ((n-1) +2) ((n-1) +3) + … + 1/6 (0 + 1) (0 + 2) (0 + 3) #
# = 1/24 (n + 1) (n + 2) (n + 3) (n + 4) #
وبالتالي:
# "" ^ 9 D_5 = 1/24 (9 + 1) (9 + 2) (9 + 3) (9 + 4) = 715 #
مجموع الأرقام المكونة من ثلاثة أرقام هو 15. رقم الوحدة أقل من مجموع الأرقام الأخرى. رقم العشرات هو متوسط الأرقام الأخرى. كيف تجد الرقم؟
A = 3 "؛" b = 5 "؛" c = 7 م عطى: a + b + c = 15 ................... (1) c <b + أ ............................... (2) ب = (أ + ج) / 2 ...... ........................ (3) '~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~ فكر في المعادلة (3) -> 2b = (a + c) اكتب المعادلة (1) كـ (a + c) + b = 15 عن طريق الاستبدال يصبح 2b + b = 15 لون ا (أزرق) (=> b = 5) '~~~~~~~~~~~~~~~~~~~~~~~~~~ الآن لدينا: a + 5 + c = 15. .................. (1_a) c <5 + a ........................ ...... (2_a) 5 = (a + c) / 2 .............................. (3_a ) '~~~~~~~~~~~~~~~~~~~~~~~~~~~ من 1_a "" a + c = 10 -&
باستخدام الأرقام من 0 إلى 9 ، كم عدد الأرقام المكونة من 3 أرقام بحيث يمكن أن يكون الرقم فردي ا وأكبر من 500 ويمكن تكرار الأرقام؟
250 رقما إذا كان الرقم هو ABC ، إذن: بالنسبة إلى A ، هناك 9 احتمالات: 5،6،7،8،9 بالنسبة لـ B ، كل الأرقام ممكنة. هناك 10 لـ C ، هناك 5 احتمالات. 1،3،5،7،9 وبالتالي فإن العدد الإجمالي للأرقام المكونة من 3 أرقام هو: 5xx10xx5 = 250 ويمكن أيض ا تفسير ذلك على النحو التالي: يوجد 1000،3 أرقام من 000 إلى 999 نصفهم يتراوح من 500 إلى 999 وهو ما يعني 500. نصف هؤلاء من الغريب والنصف متساويان. وبالتالي ، 250 أرقام.
N عدد صحيح موجب من رقمين حيث مجموع الأرقام هو 3. إذا لم يكن أي من الأرقام يساوي 0 ، فما هو N؟
12 إذا كان N هو رقم موجب مكون من خانتين ، حيث يكون مجموع الأرقام هو 3 ، فإن الاحتمالين الوحيدين لـ N هو: 12 و 30 ولكن بما أن أيا من الأرقام يساوي 0 ، فهذا يستثني 30 من كونه خيار ا ، وهكذا الجواب هو 12.