إجابة:
إذا
ثم
تفسير:
لاحظ أولا أن هذه ليست معادلة. إنها درجة ثانية متعددة الحدود في
إذا سعينا لإيجاد جذور
دعنا نجد جذور
وضعنا
أي العوامل التي تؤدي إلى:
وبالتالي ، أيضا
وميز المعادلة التربيعية هو -5. أي إجابة تصف عدد ونوع حلول المعادلة: 1 حل معقد 2 حل حقيقي 2 حل معقد 1 حل حقيقي؟
المعادلة التربيعية لديك 2 حلول معقدة. يمكن لمميز المعادلة التربيعية أن يقدم لنا فقط معلومات حول معادلة النموذج: y = axe ^ 2 + bx + c أو parabola. لأن أعلى درجة من كثير الحدود هو 2 ، يجب ألا يحتوي على أكثر من حلين. المميز هو ببساطة العناصر الموجودة أسفل رمز الجذر التربيعي (+ -sqrt ("")) ، ولكن ليس رمز الجذر التربيعي نفسه. + -sqrt (b ^ 2-4ac) إذا كان المتمايز ، b ^ 2-4ac ، أقل من الصفر (أي ، أي رقم سالب) ، سيكون لديك سالب تحت رمز الجذر التربيعي. القيم السلبية تحت الجذر التربيعي هي حلول معقدة. يشير الرمز + إلى وجود حل + وحل. لذلك ، يجب أن تحتوي المعادلة التربيعية على حلين معقدين.
جذور المعادلة التربيعية 2x ^ 2-4x + 5 = 0 هي alpha (a) و beta (b). (أ) أوضح أن 2a ^ 3 = 3a-10 (b) أوجد المعادلة التربيعية بالجذور 2a / b و 2b / a؟
انظر أدناه. أولا ، ابحث عن جذور: 2x ^ 2-4x + 5 = 0 باستخدام الصيغة التربيعية: x = (- (- 4) + - sqrt ((- 4) ^ 2-4 (2) (5))) / 4 x = (4 + -sqrt (-24)) / 4 x = (4 + -2isqrt (6)) / 4 = (2 + -isqrt (6)) / 2 alpha = (2 + isqrt (6)) / 2 beta = (2-isqrt (6)) / 2 a) 2a ^ 3 = 3a-10 2 ((2 + isqrt (6)) / 2) ^ 3 = 3 ((2 + isqrt (6)) / 2 ) -10 2 ((2 + isqrt (6)) / 2) ^ 3 = (2 (2 + isqrt (6)) (2 + isqrt (6)) (2 + isqrt (6))) / 8 = 2 * (- 28 + 6isqrt (6)) / 8 لون (أزرق) (= (- 14 + 3isqrt (6)) / 2) 3 ((2 + isqrt (6)) / 2) -10 = (6 + 3isqrt (6)) / 2-10 = (6 + 3isqrt (6) -20) / 2color (أزرق) (= (- 14 + 3isqrt (6)) / 2) b) 2 * a / b = ((2+ is
لماذا يمكن حل كل المعادلة التربيعية باستخدام الصيغة التربيعية؟
بما أن الصيغة التربيعية مشتقة من إكمال الطريقة المربعة ، والتي تعمل دائم ا. لاحظ أن التخصيم يعمل دائم ا أيض ا ، ولكن في بعض الأحيان يكون من الصعب جد ا القيام بذلك. آمل أن يكون هذا كان مفيدا.