الرجاء المساعدة ، لا أفهم ما يطرحه هذا السؤال؟

الرجاء المساعدة ، لا أفهم ما يطرحه هذا السؤال؟
Anonim

إجابة:

انظر عملية الحل أدناه:

تفسير:

المصطلح # (1.2b): 6 2/3 # يمكن إعادة كتابته كـ: # (1.2b) / (6/2/3) #

إذا السؤال هو حل المعادلة التالية لـ #ب#:

# 4.8 / (1 7/9) = (1.2b) / (6 2/3) #

تغيير الكسور المختلطة إلى كسر غير لائق

# 1 7/9 = 1 + 7/9 = (9/9 xx 1) + 7/9 = 9/9 + 7/9 = (7 + 9) / 9 = 16/9 #

# 6 2/3 = 6 + 2/3 = (3/3 xx 6) + 2/3 = 18/3 + 2/3 = (18 + 2) / 3 = 20/3 #

يمكننا الآن إعادة كتابة المشكلة على النحو التالي:

# 4.8 / (16/9) = (1.2b) / (20/3) #

أو

# (4.8 / 1) / (16/9) = ((1.2b) / 1) / (20/3) #

يمكننا استخدام هذه القاعدة لتقسيم الكسور لإعادة كتابة كل جانب من المعادلة:

# (اللون (الأحمر) (أ) / اللون (الأزرق) (ب)) / (اللون (الأخضر) (ج) / اللون (الأرجواني) (د)) = (اللون (الأحمر) (أ) اللون ×× (اللون الأرجواني) (د)) / (اللون (الأزرق) (ب) اللون ×× (الأخضر) (ج)) #

# (اللون (الأحمر) (4.8) / اللون (الأزرق) (1)) / (اللون (الأخضر) (16) / اللون (الأرجواني) (9)) = (اللون (الأحمر) (1.2b) / اللون (الأزرق) (1)) / (اللون (الأخضر) (20) / اللون (البنفسجي) (3)) #

# (اللون (الأحمر) (4.8) اللون ×× (اللون الأرجواني) (9)) / (اللون (الأزرق) (1) اللون ×× (الأخضر) (16)) = (اللون (الأحمر) (1.2 ب) اللون ×× (اللون الأرجواني) (3)) / (اللون (الأزرق) (1) اللون ×× (الأخضر) (20)) #

# 43.2 / 16 = (3.6 ب) / 20 #

بعد ذلك ، اضرب كل جانب من المعادلة ب #COLOR (أحمر) (20) / اللون (الأزرق) (3.6) # لحل ل #ب# مع الحفاظ على التوازن في المعادلة:

# اللون (الأحمر) (20) / اللون (الأزرق) (3.6) × 43.2 / 16 = اللون (الأحمر) (20) / اللون (الأزرق) (3.6) ×× (3.6 ب) / 20 #

# 864 / 57.6 = الإلغاء (اللون (الأحمر) (20)) / الإلغاء (اللون (الأزرق) (3.6)) ×× (اللون (الأزرق) (الإلغاء (اللون (الأسود) (3.6))) ب) / اللون (الأحمر) (إلغاء (اللون (أسود) (20))) #

# 15 = ب #

# ب = 15 #